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ABSTRACT 
 

 
The continued inappropriate use of antibiotics over the years has led to the development 

of resistance mechanisms in microorganisms against multiple drugs. One of the most important 

resistance mechanisms in Gram-negative bacteria is the usage of membrane proteins that act as 

efflux pumps and help in recognizing and exporting a broad range of drugs from the cell. This 

dissertation mainly focuses on the structure, function, and regulation of these bacterial efflux 

pumps. Using X-ray crystallography, we have studied the Mycobacterium tuberculois 

transcriptional regulator Rv1219c, which controls the expression of the ABC superfamily 

multidrug efflux pump Rv1217c-Rv1218c. We also quantified the binding of Rv1219c with 

different ligands and DNA using fluorescence polarization and isothermal titration calorimetry 

(ITC), respectively. An inner membrane protein HpnN belonging to the RND family in 

Burkholderia multivorans, is known to be involved in transporting certain pentacyclic lipids 

called hopanoids towards the outer membrane. To elucidate the structural basis of hopanoid 

transport, we have determined the crystal structures of HpnN. Further, by using in vivo studies 

we were able to confirm that HpnN mediates drug resistance in B. multivorans by transporting 

hopanoids, hence creating a protective layer in the outer membrane. In order to understand the 

structure and transport dynamics of multidrug efflux pump CmeB in Campylobacter jejuni, 

also belonging to the resistance nodulation-division (RND) family, we used X-ray 

crystallography and single-molecule fluorescence resonance energy transfer (sm-FRET) 

imaging. Using sm-FRET, we were able to see that one of the crystallized forms of CmeB 

follows a mechanism where each protomer in an RND trimer might be able to work 

independently, instead of the previously proposed “rotating mechanism”.
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CHAPTER 1. GENERAL INTRODUCTION 
 

Antibiotics are undoubtedly one of the most successful drugs in history of medicine. 

They have contributed significantly to the control of infectious diseases responsible for high 

mortality rates in humans. Despite the great success of antibiotics, drug resistance in bacteria 

has emerged as a major public health problem. Resistant strains of microorganisms evolve 

naturally as result of erroneous replication or exchange of resistant traits between them. 

However, the use and misuse of antibiotics accelerates the emergence of drug-resistant strains 

and hence compromises their effectiveness. As a consequence of reduced effectiveness of the 

first-line drugs, the patients remain infectious for a longer time. Further, this leads to increased 

health care costs and an economic burden on families, due to need for more expensive 

therapies. According to WHO’s 2014 report, antibiotic resistance in its present case scenario 

can be a huge threat to the treatment of common infections. The report further predicts that the 

world could be heading towards a post-antibiotic era, in which common infections that have 

been treatable for decades can once again kill if immediate steps are not taken to prevent it [1]. 

Resistance of Gram-negative bacteria to antibiotics is mediated by multiple 

mechanisms [2], which include decreased cell permeability, synthesis of certain antibiotic-

inactivating enzymes, alteration of the drug target inside the cell and active extrusion of drugs 

from cells via multidrug efflux pumps. While the first three mechanisms typically confer 

resistance to a specific class of drugs, multidrug efflux pumps contribute to both intrinsic and 

acquired resistance to a broad range of antimicrobials and toxic compounds. Use of multidrug 

resistance (MDR) transporters for extrusion of various drugs is one of the most common 

resistance mechanism found in bacteria.  
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Figure 1. Antibiotic resistance mechanisms used by bacteria. 

 

The bacterial multidrug efflux transporters can be divided into two major classes on the 

basis of bioenergetics and structural criteria: (i) the ATP-binding cassette (ABC) family, which 

uses ATP hydrolysis for active extrusion of the drugs, and (ii) Secondary transporters, which 

utilize the proton gradient or sodium ions to drive the pump. On the basis of size and 

similarities in the primary and the secondary structure, the secondary transporters can further 

be divided into four families: the major facilitator superfamily (MFS), the resistance-

nodulation-cell division (RND) family, the small multidrug resistance (SMR) family, and the 

multidrug and toxic compound extrusion (MATE) family [3].  

Gram-negative bacteria, in general, have their RND efflux pumps located within the 

inner membrane and function in complex with an outer membrane channel and a periplasmic 

adaptor protein to form a tripartite efflux pump spanning both the inner and the outer 

membrane. These protein complexes transport a wide variety of substrates including dyes, 

detergents, antibiotics, and host derived molecules, from the periplasm to the extra-cellular  

Antibiotic Resistance Mechanism

1. Decreased cell permeability

2. Enzymatic modification

3. Alteration of target site
4. Efflux pump 

Antibiotic



www.manaraa.com

  

 

3 

 

Figure 2. Classification of bacterial drug efflux pumps 

 

space. Recent efforts have also been directed towards understanding the complex regulatory 

pathways controlling the expression of MDR genes. 

 

Tuberculosis (TB) is responsible for millions of deaths across the world every year and 

still remains one of the deadliest diseases [4,5]. Recent studies indicate that multidrug 

resistance of M. tuberculosis is linked to constitutive or inducible expression of multidrug 

efflux pumps [6]. In Gram-negative bacteria, efflux systems of the RND superfamily play 

major roles in the intrinsic and acquired tolerance of antibiotics and noxious chemicals [7]. 

However, the ABC-type efflux transporters are not commonly linked to multidrug resistance. 

Recent work demonstrated that the ABC transporter Rv1217c–Rv1218c recognizes and 

actively extrudes a variety of structurally unrelated toxic chemicals and hence mediates the 

intrinsic resistance to these antimicrobials in M. tuberculosis. [8]. Repressor protein Rv1219c 

of M. tuberculosis is believed to regulate the transcription of Rv1217c-Rv1218c multidrug  

 

Bacterial drug efflux pumps 
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Figure 3. Transcriptional regulation mechanism in repressor proteins. 

 

efflux system [9]. In general, a repressor protein binds to the operator region of DNA, thus 

blocking the progress of RNA polymerase along the DNA Strand. Once a suitable ligand binds 

to this protein, it releases the DNA, thus allowing the transcription of desired genes by RNA 

polymerase [10, 11].  

In this project, we tried to establish how Rv1219c modulates the expression of 

Rv1217c-Rv1218c. One of the major goals of this project was to determine the structure of 

Rv1219c through crystallization to find out the important residues which allow it to bind to the 

different drugs.  

 

Burkholderia multivorans is a member of the Burkholderia cepacia complex (Bcc) and 

is highly capable of affecting immunocompromised individuals, such as patients with cystic 

fibrosis (CF) [12]. Bcc pathogens are found to be intrinsically resistant to a broad range of 

antibiotics, which includes β-lactams, fluoroquinolones, aminoglycosides, polymyxins, and 

Mechanism of Transcriptional Regulation

ligand

Operator region
of DNA

Repressor protein
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Figure 4. Proposed mechanism of hopanoid transport by RND family protein HpnN. 

 

cationic peptides, thus posing a major challenge to the treatment of pulmonary infections 

caused by these bacteria [13]. It has been reported that pentacyclic triterpenoid lipids called 

“hopanoids” play a major role in maintaining membrane stability in B. multivorans, thus 

participating in multidrug resistance [13-15]. The hopanoids are structural analogs of sterols 

and like cholesterol in eukaryotic membranes, these hopanoids insert into the bacterial 

membranes, thus contributing to their stability and stiffness [16-19]. Recent studies have 

shown that Hopanoid biosynthesis-associated RND (HpnN) transporters [20,21], located in the 

inner membrane, are mainly responsible for shuttling hopanoids from the cytoplasmic 

membrane to the outer membrane of these Gram-negative bacteria. Thus, HpnN could be  

participating in drug resistance by transporting hopanoids towards the outer membrane and  
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hence decreasing the permeability of the cell towards antibiotics. In spite of the importance of  

hopanoids in bacteria, the mechanism of intracellular hopanoid trafficking for cell wall 

remodeling has not been explored.  

Here, we mainly tried to study the structure-function of HpnN. Crystallization of HpnN 

was carried out to visualize the pathway for hopanoid transport and the important residues 

involved in the HpnN-hopanoid interaction. Further, site-directed mutagenesis was carried out 

to to perform in vivo studies in order to understand the importance of these residues in 

functioning of Burkholderia HpnN. 

 

 Campylobacter jejuni is a major causative agent of human enterocolitis [22] and is 

known to harbor multiple drug efflux transporters to mediate antibiotic resistance. Among 

them, the tripartite multidrug efflux system CmeABC [23-25], a hydrophobic and amphiphilic 

RND (HAE-RND) efflux pump [26] is the primary antibiotic efflux system and the best 

functionally characterized transporter in Campylobacter. The CmeABC tripartite complex  

comprises of the inner membrane transporter CmeB, the periplasmic membrane fusion protein 

CmeA, and the outer membrane channel CmeC. It has been found that this efflux pump also 

plays an important role in conferring resistance to Campylobacter against fluoroquinolones and 

bile compounds. Currently, the Escherichia coli AcrB [27-32] and Pseudomonas aeruginosa  

MexB [33] are the two multidrug transporters of the HAE-RND type efflux pumps whose 

structures have been resolved using crystallography. The other components of these tripartite 

systems have also been determined, which includes the outer membrane channels E. coli TolC 

[34] and P. aeruginosa OprM [35] as well as the periplasmic membrane fusion proteins E. coli 

AcrA [36] and P. aeruginosa MexA [37-39]. More recently, the crystal structure of outer 

membrane channel CmeC [40] of the tripartite complex CmeABC has been determined.  
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Figure 5. Model of CmeABC tripartite efflux pump in Campylobacter jejuni 

 

The main aim of this project was to understand the transport mechanism of the CmeB 

efflux pump by structural elucidation using X-ray crystallography. In addition, the functional 

dynamics were studied using single-molecule FRET experiments. 
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Thesis organization 

Chapter 1 is the general introduction that provides the background information for the 

RND family hopanoid transporter HpnN, multidrug efflux pump CmeB and TetR family 

regulator Rv1219c. 

Chapter 2 is a manuscript published in Protein Science, which describes the role of 

Rv1219c in regulating the expression of multidrug efflux pump Rv1217c-Rv1218c in M. 

tuberculosis. The crystal structures of Rv1219c together with the functional studies provide 

insight into the mechanism of transcriptional regulation by Rv1219c. Cloning of rv1219c was 

done by HT Lei. Expression, purification and crystallization was carried out by me and A. 

Radhakrishnan. Model building and structural refinement was done by TH Chou and CC Su.  

Chapter 3 is a manuscript, presenting the crystal structures of B. multivorans HpnN, 

which is an inner membrane hopanoid transporter belonging to the RND family. The crystal 

structures are unique homodimers and the first of their type to be reported in the RND family. 

Cloning of hpnN was done by CC Su and me. Expression, purification and crystallization and 

was carried out by me. The in-vivo growth assays were designed by CC Su and carried out by 

me. 

Chapter 4 is a manuscript, that describes two different crystal structures of multidrug 

efflux pump CmeB, which belongs to RND family and spans the inner membrane of C. jejuni. 

The crystal structures of CmeB suggest different transient states involved in drug efflux. Also, 

sm-FRET experiments allowed us to propose the mechanism involved in drug transport by 

CmeB. Cloning of cmeB was done by CC Su and me. Expression, purification and 

crystallization and was carried out by me and CC Su. Model building and structural refinement 

was done by CC Su. Single-molecule FRET recordings were carried out by L Yin and data 

analysis was done by CC Su and TH Chou. 
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Chapter 5 outlines conclusions and the future directions. This chapter mainly summarizes 

the findings in Chapter 2 to Chapter 4 in order to describe the structure, function and regulation 

of bacterial drug efflux pumps. Further, it states the additional set of experiments that must be 

performed next in order to address the key questions, and the new approaches that might be 

needed to overcome the challenges in the process. 
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CHAPTER 2. CRYSTAL STRUCTURE OF THE TRANSCRIPTIONAL REGULATOR 

RV1219C OF MYCOBACTERIUM TUBERCULOSIS 

 

A paper published in Protein Sci. (2014), 23: 423-432. doi: 10.1002/pro.2424. 
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Abstract 

The Rv1217c-Rv1218c multidrug efflux system, which belongs to the ATP-binding 

cassette (ABC) superfamily, recognizes and actively extrudes a variety of structurally unrelated 

toxic chemicals and mediates the intrinsic resistance to these antimicrobials in Mycobacterium 

tuberculosis.  The expression of Rv1217c-Rv1218c is controlled by the TetR-like 

transcriptional regulator Rv1219c, which is encoded by a gene immediately upstream of 

rv1218c.  To elucidate the structural basis of Rv1219c regulation, we have determined the 

crystal structure of Rv1219c, which reveals a dimeric two-domain molecule with an entirely 

helical architecture similar to members of the TetR family of transcriptional regulators.  The N-

terminal domains of the Rv1219c dimer are separated by a large center-to-center distance of 64 

Å.  The C-terminal domain of each protomer possesses a large cavity.  Docking of small 

compounds to Rv1219c suggests that this large cavity forms a multidrug binding pocket, which 

can accommodate a variety of structurally unrelated antimicrobial agents.  The internal wall of 

the multidrug binding site is surrounded by seven aromatic residues, indicating that drug 

binding may be governed by aromatic stacking interactions.   In addition, fluorescence 

polarization reveals that Rv1219c binds drugs in the micromolar range. 

 

Introduction 

Tuberculosis (TB) caused by Mycobacterium tuberculosis, is responsible for the death 

of approximately 2 million people each year and remains one of the deadlist diseases.1,2 

Standard treatment of TB requires 6-9 months with multiple antibiotics.3 Noncompliance to 

this lengthy regimen results in relapses and selects for multidrug resistant (MDR) and 

extensively drug resistant (XDR) strains. MDR-TB are defined as strains that are resistant to at 

least the front-line antibiotics isoniazid and rifampicin, and XDR-TB is defined as resistant to 

rifampicin, isoniazid, fluoroquinolones, and at least one of the injectible second-line drugs. 
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Totally drug resistant (TDR)-TB was recently identified, indicating that even second-line drugs 

can be misused and become ineffective.4-8 Combined, the emergence of drug-resistant TB 

complicates treatment, poses a significant risk to global public health, and challenges our 

expectation for TB control and elimination. 

Recent research indicates that multidrug resistance of M. tuberculosis is linked to 

constitutive or inducible expression of multidrug efflux pumps.9  Drug efflux pumps of 

bacteria have been categorized into five basic families: the ATP-binding cassette (ABC), 

resistance-nodulation-division (RND), multidrug and toxic compound extrusion (MATE), 

major facilitator (MF) and small multidrug resistance (SMR) families.10  In Gram-negative 

bacteria, efflux systems of the RND superfamily play major roles in the intrinsic and acquired 

tolerance of antibiotics and noxious chemicals.11  They are key mechanisms by which these 

pathogens survive in the presence of a variety of structurally unrelated, toxic compounds 

unfavorable for their survival.  However, the ABC-type efflux transporters are not commonly 

linked to multidrug resistance.  In M. tuberculosis, the ABC transporters Rv1217c-Rv1218c12 

and Rv019413 are among the very few efflux proteins involved in resistance to structurally 

diverse antimicrobials. 

Roughly 2.5% of the M. tuberculosis H37Rv genome encodes transport proteins of the 

ABC superfamily, but only a few of these transporters have been characterized.  Recent work 

demonstrated that the ABC-type Rv1217c-Rv1218c efflux system functions as a multidrug 

efflux pump, extruding a wide range of structurally unrelated drugs, including novobiocins, 

pyrazolones, biarylpiperazines, bisanilinopyrimidines, pyrroles and pyridones.12 Our work is 

focused on elucidating how M. tuberculosis drug efflux systems are regulated.  We previously 

determined the crystal structure of the Rv3066 efflux regulator,14 which controls the expression 

of the Mmr efflux pump.15 We report here the crystal structure of the Rv1219c regulator, which 

represses the transcriptional regulation of the Rv1217c-Rv1218c multidrug efflux transport 
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system.  The rv1219c gene is the first gene of the Rv1217c-Rv1218c operon and encodes a 212 

amino acid protein that shares sequence homology to members of the TetR family of 

transcriptional repressors.  Our data suggest that Rv1219c is a multidrug binding protein that 

interacts with a variety of toxic aromatic compounds, such as bis-quinolinium cyclophanes, 

phosphoramidites, porphyrins and pyridazines.   

 

Results 

Overall structure of Rv1219c 

The crystal structure of the M. tuberculosis Rv1219c transcriptional regulator was 

determined to a resolution of 2.99 Å using single isomorphous replacement with anomalous 

scattering (Table S1 and Fig. S1), revealing that only one Rv1219c molecule is present in the 

asymmetric unit.  However, a dimeric arrangement of the regulator was found by applying a 

two-fold crystallographic symmetry operator (Fig. 1).  As a TetR family of regulators, 

Rv1219c consists of two functional motifs: the N-terminal DNA-binding and C-terminal 

ligand-binding domains.  Each subunit of Rv1219c is composed of 10 helices (α1-α10 and 

α1ʹ-α10ʹ, respectively).  The helices of Rv1219c are designated numerically from the N-

terminus as α1 (7-23), α2 (29-36), α3 (40-47), α4 (50-74), α5 (78-86), α6 (92-104), α7 (108-

130), α8 (139-160), α9 (166-188) and α10 (194-206).  In this arrangement, the smaller N-

terminal domain includes helices α1 through α3 and the N-terminal end of α4 (residues 50-

60), with α2 and α3 forming a typical helix-turn-helix motif.  However, the larger C-terminal 

domain comprises the C-terminal end of helices α4 (residues 61-74) through α10, and helices 

α8, α9 and α10 are involved in the dimerization of the regulator. 
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N-terminal domain 

The smaller N-terminal domain of Rv1219c shares considerably high sequence and 

structural similarities with the other TetR family members.16 This is evident through protein 

sequence alignment that residues 7-60 of Rv1219c possess 25%, 24% and 31% amino acid 

identity to TetR,17 QacR18 and Rv3066,14 respectively.  In addition, superimposition of the Cα 

atoms of this N-terminal region, between residues 7 and 60, with those of AcrR19 and Rv306614 

results in overall rms deviations of 3.1 Å and 3.2 Å.  

Perhaps, the most striking difference between the structures of Rv1219c and other TetR 

members is its large center-to-center distance, which is approximately 64 Å, between the two 

N-termini of the dimer (Fig. 1).  This center-to-center distance is by far the longest among all 

known structures of the TetR-family regulators.  The corresponding distances between the two 

recognition helices of the DNA-binding domains are 35 Å, 39 Å and 42 Å in the apo forms of 

TetR,17 QacR18 and AcrR.19 Given that the separation between two successive major grooves 

of a B-form DNA is 34 Å, the large center-to-center distance of Rv1219c may allow this 

regulator to span three consecutive major grooves of the promoter DNA. 

 

C-terminal domain 

The C-terminal domain of Rv1219c consists of six α helices (α4 – α10), with helices 

α4, α5, α7, α8 and α9 forming an antiparallel five-helix bundle (Fig. 1).  Like QacR, the 

dimerization surface mainly comprises helices α8 and α9, although helices α6 and α7 are also 

involved in the formation of the dimer.  These helices make contacts with their counterparts to 

stabilize the dimerization.  It should be noted that helix α10 of the C-terminal end of Rv1219c 

forms a long arm feature.  This feature is unique in Rv1219c and was not found in other 

members of the TetR family.  The elongated helical arm extends its length to the next subunit 

of the regulator and is anchored into the deep groove created by helices α5ʹ and α9ʹ.  
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Presumably, this long arm and deep groove within the dimer are engaged to generate an 

interlocking system, securing the dimerization state of Rv1219c.  The interlocking system may 

also allow the two N-terminal DNA-binding domains of the dimer to shift away from each 

other while still maintaining the dimeric form of the regulator.  Although the C-terminal region 

displays no primary sequence conservation among members of the TetR family, the overall 

structure of the C-terminal domain of Rv1219c exhibits topological similarity to those of 

AcrR,19 Rv3066,14 EthR,20,21 QacR18 and CmeR.22   

The crystal structure of Rv1219c also revealed that the C-terminal α-helical bundle of 

each subunit of the regulator forms a large internal cavity, with an internal volume of ~802 Å3.  

Superimposition of the C-terminal domain of Rv1219c with that of QacR indicates that this 

large internal cavity overlaps with the multidrug binding pocket of QacR.18  Thus, this cavity, 

assembled by helices α4-α9, presumably creates a substrate-binding site of the regulator.  The 

interior of the cavity is surrounded by several aromatic residues, including W81, Y91, W113, 

Y123, F154, Y174 and Y186 (Fig. 2).  These residues may interact with the bound substrate 

via aromatic stacking and hydrophobic interactions. 

 

Electrophoretic mobility shift assays (EMSA) 

The organization of the genetic locus containing the rv1219c gene is depicted in Figure 

3A. Based on the genetic organization and preliminary ChIPSeq data from the TB Systems 

Biology Consortium, it was likely that Rv1219c regulated itself and downstream genes via 

binding of multiple sites. To demonstrate direct transcriptional regulation, we performed 

electrophoretic mobility shift assays (EMSA) using probes that comprised the intergenic region 

upstream of rv1219c and intragenic regions immediately upstream of the rv1218c gene that 

corresponded to additional ChIP-seq peaks (Fig. 3A). We observed a concentration-dependent 

shift of the Rv1219c probe and the two Rv1218c probes (Fig. 3B). Therefore, Rv1219c directly 
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regulates expression of Rv1219c and the Rv1217c-Rv1218c transporter. The affinity of 

Rv1219c for the probe encompassing the rv1219c promoter was greatest, shifting completely 

upon addition of 1 µM Rv1219c. The Rv1218-1 and Rv1218-2 probes did not completely shift 

even upon addition of 10 µM Rv1219c. Rv1219c bound the Rv1218-2 probe better than the 

Rv1218-1 probe, suggesting that high-, medium- and low-affinity binding sites exist. We 

identified indirect repeats in each of the probes that are likely binding sequences for Rv1219c 

(Fig. 3C).  To demonstrate the minimal binding motif for Rv1219c, 74 bp oligonucleotide 

duplexes corresponding to the indirect repeat encompassed by probe Rv1219c were 

synthesized (Fig. 3D).  This probe shifted upon addition of purified Rv1219c protein.  A 

mutated 74-mer oligo was also synthesized with mutations within the indirect repeat.  The 

mutated probe shifted with reduced efficiency compared to the wild type probe (Fig. 3D).  

Combined these data provide strong evidence that Rv1219c recognizes the indirect repeat in 

the Rv1219c promoter (green highlight, Fig. 3B).  Our EMSA data suggests that Rv1219c 

regulates its own expression and the rv1219c operon primarily through the high-affinity 

binding site highlighted in green in Figure 2C. The additional medium and low-affinity binding 

sites highlighted in yellow and blue in Figure 3C, respectively, allow Rv1219c to further 

modulate the expression of rv1218c. 

 

Rv1219c-DNA interaction 

The binding affinity of the 58-bp DNA sequence (in Fig. 3C, green) within the rv1219c 

promoter region for the Rv1219c regulator was determined using isothermal titration 

calorimetry (ITC), which obtained the binding affinity constant, KA, of 1.2 ± 0.1 x 106 M-1.   
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The enthalpic (∆H) and entropic (∆S) contributions for this binding are 4.8 ± 0.1 kcal/mol and 

44.1 cal•mol•deg-1 (Fig. 4).  Interestingly, the molar ratio for this binding reaction based on 

ITC is one Rv1219c dimer per ds-DNA. 

 

Rv1219c-drug interactions 

The Rv3066 multidrug efflux regulator14 binds several dyes, fluorescence polarization 

was used to examine if Rv1219c can also bind these dyes, including rhodamine 6G, ethidium 

and safranin O.  We found that Rv1219c interacts with rhodamine 6G, ethidium and safranin O 

with KD values of 4.6 ± 0.5, 32.4 ± 7.4 µM and 42.4 ± 7.6 µM, respectively (Figs. 5 and S2).  

These data also suggest that the Rv1219c protein binds these molecules with a simple binding 

stoichiometry of 1:1 protomer-to-drug molar ratio.  Further study is needed to confirm this 

protein-to-drug binding ratio. 

 

Virtual ligand library screening    

To elucidate the nature of protein-ligand interactions in the Rv1219c regulator virtual 

ligand screening was performed using the large internal cavity formed by the C-terminal 

domain of Rv1219c as a substrate binding cavity.  We used AutoDock Vina23 to screen small 

molecules in the DrugBank24 and ZINC25 libraries.  Vina23 utilizes the iterated local search 

global optimizer algorithm, which results in predicted binding free energies for these 

compounds ranging from -13.8 to +20 kcal/mol.  Of the 70,000 screened compounds, the best 

predicted substrate for Rv1219c was the bisquinolinum cyclophane compound UCL 1684 

ditrifluoroacetate, which is a potassium channel blocker, with a predicted binding free energy 

of -13.3 kcal/mol.  Table S2 lists the top 11 substrates, which have the lowest predicted binding 

free energies, for the Rv1219c regulator. 
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Since our fluorescence polarization data showed that Rv1219c binds rhodamine 6G, 

ethidium and safranin O, Vina23 was also used to examine how these dyes interact with the 

regulator. These dyes also bind within the multidrug binding pocket of the protein. The 

predicted binding free energies for these dyes are -8.3, -8.1 and -7.8 kcal/mol, respectively.  

These free energies suggest that Rv1219c binds the substrates listed in Table S2 more strongly 

than these dyes.  Interestingly, Vina suggests that Rv1219c uses the same binding mode to 

interact with these drugs and dyes.   

 

Discussion 

With the rising incidence of MDR-TB, it is increasingly important to understand the 

mechanisms underlying resistance to multiple antibiotics in this pathogen.  The crystal 

structure of Rv1219c provides direct information about how this regulator interacts with its 

inducing ligands.  The surface of the Rv1219c multidrug binding cavity has several familiar 

aromatic and hydrophobic residues that are critically important in other multidrug binding 

proteins.  These residues produce a hydrophobic environment for substrate binding in the C-

terminal regulatory domain. 

AutoDock Vina23 was used to study how Rv1219c binds a variety of drugs, and 

demonstrated that the large cavity of the multidrug binding site of each Rv1219c monomer can 

accommodate many different classes of drugs (Fig. 2).  Surprisingly, the top substrate for 

Rv1219c was the positively charged heterocyclic bisquinolinium cyclophane UCL 1684 

potassium channel blocker.  The next top three substrates belong to the classes of 

phosphoramidite, tetrapyrrole and organophosphorous, suggesting that these small molecules 

may also be the substrates of the Rv1217c-Rv1218c multidrug efflux pump.  These top 

compounds are either cationic or neutral molecules.  In each case, the bound drug was 

completely buried within the multidrug binding site of the Rv1219c protomer, and strong 
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aromatic stacking interaction was observed between the bound drug and regulator.  The 

docking study also indicates that residues I63, L73, W81, Y91, Y123, L146, F154, Y174, 

Y186 are important for providing hydrophobic and aromatic stacking interactions with these 

drugs. 

Since fluorescence polarization experiments demonstrate that Rv1219c binds 

rhodamine 6G, ethidium and safranin O in the micromolar range, we also used Vina23 to model 

the interactions between these positively charged dyes and the regulator.  The binding affinities 

of these dyes by Rv1219c are much weaker than those of the top Rv1219c substrates.  

However, all these dyes and top Rv1219c substrates are bound within the same multidrug 

binding site with a similar binding mode, suggesting that the process of induction by these 

ligands is similar.    

A distinguishing feature of multidrug binding proteins that bind cationic drugs is the 

presence of buried acidic glutamates or aspartates in the ligand binding pockets.  This was 

clearly demonstrated by the structures of the QacR18,26 and Rv306614 regulators.  A similar 

characteristic for the TetR-family regulators that recognize negatively charged antimicrobials 

has also been observed with TtgR27 and CmeR.28 In this case, positively charged histidines or 

lysines within the ligand-binding pockets are critical for the binding.  In the case of Rv1219c, 

the predicted substrates are either neutral or positively charged.  Thus, we expected a buried 

acidic residue was needed to participate in binding the substrate.  Unexpectedly, the binding 

crevice of Rv1219c does not contain any glutamate or aspartate.  The only charged residue 

found within the multidrug binding cavity is the cationic lysine K69 (Fig. 2).  Based on the 

docking results with the positively charged UCL 1684 and neutral phthalocyanine ligands, this 

lysine residue is within 4.8 Å and 3.1 Å away from these bound ligands.  It is likely that K69 is 

responsible for providing electrostatic interaction for the binding.  However, neutralization of 

the formal charge of the bound ligand may not be a prerequisite for drug recognition.  



www.manaraa.com

  

 

24 

Intriguingly, there are three methionines, M85, M95 and M116, seemingly coordinating with 

each other within this hydrophobic binding cavity.  These three methionines form a triad, 

similar to the periplasmic heavy metal binding site of the CusA efflux pump.29-31 It is possible 

that these three methionines may cooperate to create a metal binding site within the multidrug 

binding cavity.  The crystal structures of Rv1219c bound with a variety of ligands will be 

crucial for further understanding of how this regulator recognizes multiple antimicrobials.      

The structural similarity of the N-terminal domains of members of the TetR family suggests a 

similar mode of interaction with target DNAs. It is known that the separation between two 

consecutive major grooves of B-DNA is 34 Å.  Based on the apo structure of Rv1219c, the two 

DNA recognition regions of the dimer are separated by 64 Å.  Therefore, it is possible that the 

Rv1219c dimer is capable of spanning three successive major grooves of the double helix 

when it binds its IR.  Rv1219c likely represses the transcription of rv1217c-rv1218c by binding 

to the high-affinity IR sequence in the promoter region of the efflux operon and the lower 

affinity sites immediately upstream of rv1218c.  It is striking that the promoter probe contains 

a perfect IR that spans 58 bp (Fig. 3C, green).  MEME analysis of the three probes defined a 

consensus binding motif corresponding to this IR that was also present in the Rv1218-2 probe.  

However, the putative binding site in the Rv1218-2 probe is degenerate 

(CGATCTGACCGCGCACGCCAGG), which may explain reduced binding of Rv1219c to the 

Rv1218-2 probe relative to Rv1219 probe in the EMSAs.  

The control of TB has been compromised by the increasing proportion of infections due 

to drug-resistant strains, which are growing at alarming rate.  Thus, there is a need to develop 

new approaches for the treatment of TB.  Elucidating the structures and functions of efflux 

pumps and regulators of M. tuberculosis should enable researchers to explore novel avenues to 

combat the disease.  It has been observed that the expression level of the Rv1217c-Rv1218c 

multidrug efflux pump is significantly increased in clinically isolated MDR-TB strains in 
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comparison with that of the wild-type H37Rv M. tuberculosis.32 In this paper, we have reported 

the crystal structure of the Rv1219c regulator, which controls the expression level of Rv1217c-

Rv1218c.  It is hope that the availability of this crystal structure may allow us to rationally 

design agents that block the function of this regulator and diminish the expression of the 

multidrug efflux pump, which in turn heighten the sensitive of this pathogen to antimicrobials.        

 

Materials and Methods 

Cloning of rv1219c 

The rv1219c ORF from genomic DNA of M. tuberculosis strain H37Rv was amplified 

by PCR using the primers 5ʹ-CCATGGGCCGTTCAGCCGATCTGACC-3ʹ and 5ʹ-

GGATCCTCAGTGATGATGATGATGATGGCCGACATGTGCTTCTCC-3ʹ.  The 

corresponding PCR product was digested with NcoI and BamHI, extracted from the agarose 

gel, and inserted into pET15b as described by the manufacturer (Merck KGaA, Darmstadt, 

Germany) to generate a product that encodes a Rv1219c recombinant protein with a 6xHis tag 

at the C-terminus (Rv1219c-His6).  The recombinant plasmid (pET15bΩrv1219c) was 

transformed into DH5α cells and the transformants were selected on LB agar plates containing 

100 µg/ml ampicillin.  The presence of the correct rv1219c sequence in the plasmid construct 

was verified by DNA sequencing. 

  

Expression and purification of Rv1219c 

Briefly, Rv1219c-His6 was overproduced in E. coli BL21(DE3) cells carrying 

pET15bΩrv1219c.  Cells were grown in 6 L of Luria Broth (LB) medium with 100 µg/ml 

ampicillin at 37oC.  When the OD600 reached 0.5, the culture was treated with 1 mM isopropyl-

β-D-thiogalactopyranoside (IPTG) to induce Rv1219c expression, and cells were harvested 

within 3 h.  The collected bacterial cells were suspended in 100 ml ice-cold buffer containing 
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20 mM Na-HEPES (pH 7.2) and 200 mM NaCl, 10 mM MgCl2 and 0.2 mg DNase I (Sigma-

Aldrich).  The cells were then lysed with a French pressure cell.  Cell debris was removed by 

centrifugation for 45 min at 4oC and 20,000 rev/min.  The crude lysate was filtered through a 

0.2 µm membrane and was loaded onto a 5 ml Hi-Trap Ni2+-chelating column (GE Healthcare 

Biosciences, Pittsburgh, PA) pre-equilibrated with 20 mM Na-HEPES (pH 7.5) and 250 mM 

NaCl.  To remove unbound proteins and impurities, the column was first washed with six 

column volumes of buffer containing 50 mM imidazole, 250 mM NaCl, and 20 mM Na-

HEPES (pH 7.5).  The Rv1219c protein was then eluted with four column volume of buffer 

containing 300 mM imidazole, 250 mM NaCl, and 20 mM Na-HEPES (pH 7.5).  The purity of 

the protein was judged using 12.5% SDS-PAGE stained with Coomassie Brilliant Blue.  The 

purified protein was extensively dialyzed against buffer containing 100 mM imidazole, 250 

mM NaCl, and 20 mM Na-HEPES (pH 7.5), and concentrated to 12 mg/ml.    

For the SeMet-Rv1219c-His6 protein expression, a 10 ml LB broth overnight culture 

containing E. coli BL21(DE3)/pET15bΩrv1219c cells was transferred into 60 ml of LB broth 

containing 100 µg/ml ampicillin and grown at 37oC.  When the OD600 value reached 1.2, cells 

were harvested by centrifugation at 6000 rev/min for 10 min, and then washed two times with 

10 ml of M9 minimal salts solution.  The cells were re-suspended in 60 ml of M9 media and 

then transferred into a 6 L pre-warmed M9 solution containing 100 µg/ml ampicillin.  The cell 

culture was incubated at 25oC with shaking. When the OD600 reached 0.4, 100 mg/l of lysine, 

phenylalanine and threonine, 50 mg/l isoleucine, leucine and valine, and 60 mg/l of L-

selenomethionine were added.  The culture was induced with 1 mM IPTG after 15 min.  Cells 

were then harvested within 15 h after induction.  The procedures for purifying SeMet-Rv1219c 

were identical to those of the native protein. 

 

 



www.manaraa.com

  

 

27 

Crystallization of Rv1219c 

All crystals of the Rv1219c-His6 were obtained using hanging-drop vapor diffusion.  

The Rv1219c crystals were grown at 18 oC in 24-well plates with the following procedures.  A 

2 µl protein solution containing 12 mg/ml Rv1219c protein in 20 mM Na-HEPES (pH 7.5), 

250 mM NaCl and 100 mM imidazole was mixed with a 2 µl of reservoir solution containing 

5% Jeffamine M-600, 0.1 M Na-citrate (pH 5.6) and 0.6 M NaCl.  The resultant mixture was 

equilibrated against 500 µl of the reservoir solution.  Crystals grew to a full size in the drops 

within two weeks.  Typically, the dimensions of the crystals were 0.2 mm x 0.2 mm x 0.2 mm.  

Cryoprotection was achieved by raising the glycerol concentration stepwise to 25% with a 5% 

increment in each step.  Crystals of the tungsten derivative was prepared by incubating the 

crystals of Rv1219c in solution containing 5% Jeffamine M-600, 0.1 M Na-citrate (pH 5.6), 0.6 

M NaCl and 1 mM (NH4)2W6(µ-O)6(µ-Cl)6Cl6 for 24 hours at 25oC. 

 

Data collection, structural determination and refinement  

All diffraction data were collected at 100K at beamline 24ID-E located at the Advanced 

Photon Source, using an ADSC Quantum 315 CCD-based detector.  Diffraction data were 

processed using DENZO and scaled using SCALEPACK.33 The crystals of Rv1219c belong to 

the space group I432 (Table S1).  Based on the molecular weight of Rv1219c (23.18 kDa), the 

asymmetric unit is expected to contain one regulator protomer with a solvent content of 

22.56%.  The heavy-atom derivative was isomorphous with the native crystal (Table S1).  Six 

tungsten cluster sites were identified using HySS as implemented in the PHENIX package.34 

Single isomorphous replacement with anomalous scattering was employed to obtain 

experimental phases using the program MLPHARE.35,36 The resulting phases were subjected to 

density modification by RESOLVE37 using the native structure factor amplitudes.  Density 

modified phases were good enough to allow us to visualize the secondary structural features of 
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the molecule.  These phases were then subjected to density modification and phase extension to 

2.99 Å-resolution using the program RESOLVE.37 The resulting phases were of excellent 

quality that enabled tracing of most of the molecule.  In addition, the selenomethionyl-

substituted (SeMet) crystal data were used to help in tracing the molecules by anomalous 

difference Fourier maps where we could ascertain the proper registry of SeMet residues.  The 

full-length Rv1219c protein consists of eight methionine residues and all of these eight 

selenium sites were identified in each protomer of the protein.  After tracing the initial model 

manually using the program Coot,38 the model was refined against the native data at 2.99 Å-

resolution in PHENIX,34 leaving 5% of reflections in Free-R set.  Iterations of refinement using 

PHENIX34 and CNS39 and model building in Coot38 lead to the current model, which consists 

205 residues with excellent geometrical characteristics (Table S1). 

 

Electrophoretic mobility shift assays (EMSA) 

Rv1219c-His6 was purified from E. coli lysates using Talon resin (Novagen). Probes 

were amplified from the H37Rv genome using the primers listed in Table S3.  Synthetic probes 

were synthesized with the following sequences: WT- 

TAATTCGGCGAGCAGACGCAAAATCGCCCTGAACCGTGCGTTCCAGGGCGATTTT

GCGTCTGCTCGGCAAAGTT; mutant- 

TAATTCGGTATACGCTACGAGCATCTATATGAACCGTGCGTTCTATACGCTACAGG

GCGATTATAGGCAAAGTT.  All probes were labeled with Digoxigenin using the Roche 

DIG Gel Shift kit. For EMSA analysis, 12 nM Dig-labeled probe and the indicated micromolar 

concentrations of protein were incubated for 45 minutes at room temperature in the Roche 

binding buffer modified by the addition of 0.25 mg/mL herring sperm DNA, and 0.75 µg/mL 

poly(d[I-C]). All reactions were resolved on a 6% native polyacrylamide gel in TBE buffer, 
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transferred to nylon membrane and DIG-labeled DNA-protein complexes detected following 

the manufacturer’s recommendations. Chemiluminescent signals were acquired using an 

ImageQuant LAS 4000 (GE). 

 

Isothermal Titration Calorimetry 

We used ITC to examine the binding of the DNA sequence (highlighted in green in Fig. 

3C) to the purified CmeR regulator.  Measurements were performed on a VP-Microcalorimeter 

(MicroCal, Northampton, MA) at 25 oC.  Before titration, the protein was thoroughly dialyzed 

against buffer containing 10 mM Na-phosphate pH 7.2 and 100 mM NaCl.  The protein 

concentration was determined using the Bradford assay.  The protein sample was then adjusted 

to a final concentration of 10 µM.  DNA solution consisting of 200 µM 58-bp ds-DNA in 10 

mM Na-phosphate pH 7.2 and 100 mM NaCl was prepared as the titrant.  The protein and 

ligand samples were degassed before they were loaded into the cell and syringe.  Binding 

experiments were carried out with the protein solution (1.5 ml) in the cell and the DNA as the 

injectant.  Ten microliter injections of the ligand solution were used for data collection.  

Injections occurred at intervals of 240 s, and the duration time of each injection was 10 s.  Heat 

transfer (µcal/s) was measured as a function of elapsed time (s).  The mean enthalpies 

measured from injection of the ligand in the buffer were subtracted from raw titration data 

before data analysis with ORIGIN software (MicroCal).  Titration curves were fitted by a 

nonlinear least squares method to a function for the binding of a DNA to a macromolecule.  

Nonlinear regression fitting to the binding isotherm provided us with the equilibrium binding 

constant (KA = 1/KD) and enthalpy of binding (∆H).  Based on the values of KA, the change in 

free energy (∆G) and entropy (∆S) were calculated with the equation: ∆G = - RT lnKA = ∆H – 

T∆S, where T is 273 K and R is 1.9872 cal/K per mol. Calorimetry trials were also carried out 
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in the absence of Rv1219c in the same experimental conditions.  No change in heat was 

observed in the injections throughout the experiment. 

 

Fluorescence polarization assay for ligand binding affinity  

Fluorescence polarization was used to determine the binding affinities of a variety of 

Rv1219c ligands, including rhodamine 6G, ethidium bromide and safranin O.  The experiment 

was done using a ligand binding solution containing 10 mM Na-phosphate (pH 7.2), 100 mM 

NaCl and 1 µM ligand (rhodamine 6G, ethidium bromide or safranin O).  The protein solution 

consisting of Rv1219c in 10 mM Na-phosphate (pH 7.2), 100 mM NaCl and 1 µM ligand 

(rhodamine 6G, ethidium bromide or safranin O) was titrated into the ligand binding solution 

until the polarization (P) was unchanged.  As this is a steady-state approach, fluorescence 

polarization measurement was taken after a 5 min incubation for each corresponding 

concentration of the protein and bile acid to ensure that the binding has reached equilibrium.  

All measurements were performed at 25oC using a PerkinElmer LS55 spectrofluorometer 

equipped with a Hamamatsu R928 photomultiplier. The excitation and emission wavelengths 

were 526 and 555 nm for rhodamine 6G, 483 and 620 nm for ethidium, and 520 and 587 nm 

for safranin O.  Fluorescence polarization signal (in ΔP) was measured at the emission 

wavelength.  Each titration point recorded was an average of 15 measurements.  Data were 

analyzed using the equation, P = {(Pbound – Pfree)[protein]/(KD + [protein])} + Pfree, where P is 

the polarization measured at a given total protein concentration, Pfree is the initial polarization 

of free ligand, Pbound is the maximum polarization of specifically bound ligand, and [protein] is  

the protein concentration.  The titration experiments were repeated for three times to obtain the 

average KD value.  Curve fitting was accomplished using the program ORIGIN (OriginLab 

Corporation, Northampton, MA). 
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Virtual ligand screening using AutoDock Vina 

AutoDock Vina was used for virtual ligand screening of a variety of compounds.  The 

docking area was assigned visually to cover the internal cavity of the Rv1219c monomer.  A 

grid of 35 Å × 35Å × 35Å with 0.375 Å spacing was calculated around the docking area for all 

atom types presented in the DrugBank and ZINC libraries using AutoGrid.  The iterated local 

search global optimizer algorithm was employed to predict the binding free energies for these 

compounds. 

 

Protein Data Bank accession code 

Coordinates and structural factors for the structure of Rv1219c have been deposited at 

the RCSB Protein Data Bank with an accession code 4NN1. 
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Figure 1.  Structure of the M. tuberculosis Rv1219c regulator.  (A) Ribbon diagram of a 

protomer of Rv1219c.  The molecule is colored using a rainbow gradient from the N-terminus 

(blue) to the C-terminus (red).  (B) Ribbon diagram of the Rv1219c dimer.  Each subunit of 

Rv1219c is labeled with a different color (green and orange).  The Figure was prepared using 

PyMOL (http://www.pymol.sourceforge.net). 

 

 

 

 

 

 

Figure 2.  The C-terminal multidrug binding site.  The seven aromatic residues (W81, Y91, 

W113, Y123, F154, Y174 and Y186) that surround the interior of the multidrug binding cavity 

of Rv1219c are in yellow sticks.  The cationic residue K69, which is thought to be important 

for interacting with the bound drug, is in magenta stick.  The top three Rv1219c substrates are 

also included (red, UCL 1684; orange, (S)-(+)-N-(3,5-Dioxa-4-phosphacyclohepta[2,1-a;3,4-

a′]dinaphthalen-4-yl)-dibenzo[b,f]azepine; blue, phthalocyanine). 
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Figure 3.  Rv1219c binds to promoter regions of rv1219c and upstream of the rv1218c gene. 

(A) A schematic depicting the DNA probes used in electrophoretic mobility shift assays 

(EMSAs) to examine the promoter region of rv1219c and rv1218c. (B) EMSAs were 

performed using 12 nM Dig-labeled probe and the indicated micromolar concentrations of 

protein. An arrow denotes the shifted probes. (C) The reverse complement sequence of 

rv1219c-rv1218c region.  The stop codon of rv1220c is underlined, the start codons of rv1219c 

and rv1218c are bold and underlined.  The 142 bp intergenic region between rv1220c and 

rv1219c is in lowercase, coding sequences are in upper case. Indirect repeats were identified in 
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each of the probes using the MEME algorithm. The high-affinity binding site in the rv1219c 

promoter probe is highlighted in green. The low-affinity Rv1219c binding motifs in the 

rv1218-1 and rv1218-2 probes are highlighted in blue and yellow, respectively.  (D) EMSAs 

were performed using 12 nM Dig-labeled probe and the indicated micromolar concentrations 

of protein. An arrow denotes the shifted probes. Synthetic oligonucleotide duplexes comprising 

the high affinity binding site plus 8 nt on either side (74 bp total) were used as probes. 

 

 

 

 

 

Figure 4.  Representative isothermal titration calorimetry for the binding of the 58-bp DNA to 

Rv1219c regulator.  (A) Each peak corresponds to the injection of 10 µl of 200 µM 58-bp 

DNA in buffer containing 10 mM Na-phosphate (pH 7.5) and 100 mM NaCl into the reaction 



www.manaraa.com

  

 

40 

cell containing 10 µM Rv1219c in the same buffer.  (B) Cumulative heat of reaction is 

displayed as a function of the injection number.  The solid line is the least-square fit to the 

experimental data, giving a KA of 1.2 ± 0.1 x 106 M-1.  The molar-to-molar ratio of dimeric 

Rv1219c:58-bp ds-DNA is 1:1. 

 

 

 

 

 

 

Figure 5.  Representative fluorescence polarization of Rv1219c.  The binding isotherm of 

Rv1219c with safranin O, showing a KD of 42.4 ± 7.6 µM.  Fluorescence polarization is 

defined by the equation, FP = (V – H) / (V + H), where FP equals polarization, V equals the 

vertical component of the emitted light, and H equals the horizontal component of the emitted 

light of a fluorophore when excited by vertical plane polarized light.  FP is a dimensionless 

entity and is not dependent on the intensity of the emitted light or on the concentration of the 

fluorophore.  mP is related to FP, where 1 mP equals one thousandth of a FP. 
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Fig. S1. Stereo view of the electron density maps of Rv1219c at a resolution of 2.99 Å.  (A) 

The electron density maps are contoured at 1.2 σ.  The Cα traces of the Rv1219c protomer in 

the asymmetric unit are in green.  Anomalous signals of the six W6(µ-O)6(µ-Cl)6Cl6
2- cluster 

sites (contoured at 4 σ) found in the asymmetric unit are colored red.  (B) Representative 

section of electron density in the vicinity of helices α8 and α9. The solvent-flattened electron 

density (50-2.99 Å) is contoured at 1.2 σ and superimposed with the final refined model 

(green, carbon; red, oxygen; blue nitrogen; yellow, sulfur). 

 

 

 

 

Fig. S2.  Representative fluorescence polarization of Rv1219c.  (A) The binding isotherm of 

Rv1219c with rhodamine 6G, showing a KD of 4.6 ± 0.5 µM.  (B) The binding isotherm of 

Rv1219c with ethidium, showing a KD of 32.4 ± 7.4 µM.  Fluorescence polarization is defined 
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by the equation, FP = (V – H) / (V + H), where FP equals polarization, V equals the vertical 

component of the emitted light, and H equals the horizontal component of the emitted light of a 

fluorophore when excited by vertical plane polarized light.  FP is a dimensionless entity and is 

not dependent on the intensity of the emitted light or on the concentration of the fluorophore.  

mP is related to FP, where 1 mP equals one thousandth of a FP.  The error bars for the binding 

of ethidium is significantly larger than those for rhodamine 6G binding because the 

fluorescence signal of ethidium is approximately 100 times weaker than that of rhodamine 6G. 

 
 
 
 
 
 
 
 
 
 
Table S1.  Data collection, phasing and structural refinement statistics of Rv1219c. 
  

Data set Rv1219c 

W6(µ-O)6(µ-
Cl)6Cl6

2- 
derivative 

SeMet-
Rv1219
c 

Data collection    
Wavelength (Å) 0.979 0.979 0.979 
Space group I432  I432  I432  
Cell constants (Å)    
     a 152.07 149.77 149.03 
     b  152.07 149.77 149.03 
     c 152.07 149.77 149.03 
     α, β, γ (°) 90,90,90 90,90,90 90,90,9

0 
Resolution (Å) 2.99 (50.00-

2.99) 
4.36 (50.00-
4.36) 

4.99 
(50.00-
4.99) 

Completeness (%) 94.9 (92.0)   94.2 (90.5) 92.7 
(91.3)    

Total reflections
  

61,944 78,413 113,629 

Unique reflections
  

12,513 2,080 1,493 

Redundancy 2.0 (2.0) 3.6 (3.4) 5.0 (4.9) 
Rmerge(%) 6.4 (42.0) 9.0 (33.9) 8.9 

(37.3) 
I / σ(I) 10.2 (2.0) 29.0 (3.9) 13.8 

(3.8) 
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Table S1. continued 
 

   

Phasing    
Number of sites  6  
Phasing power 
(acentric/centric)  1.52/1.11  
RCullis 
(acentric/centric)  0.71/0.76  
Figure of merit 
(acentric/centric)
   0.57/0.36  
Refinement    
Resolution (Å) 50 – 2.99   
Rwork(%) 22.09   
Rfree(%) 28.20   
Average B-factors 
(Å2) 

58.84   

No. of atoms in 
protein chain 

1577   

No. of water 0   
rms deviations    
    Bond angles(o) 1.223   
    Bond angles(o) 0.009   
Ramachandran 
analysis 

   

most favored (%) 94.4   
allowed (%) 5.6   
generously allowed 
(%) 

0.0   

disallowed (%) 0.0   
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Table S2.  Top 11 ligands for the Rv1219c regulator. 
 
Ligand Structure of ligand Binding 

affinity 
(kcal/mol) 

UCL 1684 
ditrifluoroacetate 
hydrate 
 
 

 

-13.3 

(S)-(+)-N-(3,5-Dioxa-4-
phosphacyclohepta[2,1-
a;3,4-a′]dinaphthalen-
4-yl)-
dibenzo[b,f]azepine 
 
 

 
 

 
 

 

-12.6 

Phthalocyanine 
 
 

 

 
 

 
 

 
 

-12.2 

2-[3-({Methyl[1-(2-
Naphthoyl)Piperidin-
4-
Yl]Amino}Carbonyl)
-2-Naphthyl]-1-(1-
Naphthyl)-2-
Oxoethylphosphonic 
Acid  
 
 

 
 

 
 
 

 
 

 
 

-12.0 
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Table S2. continued 
 
Dihydroergotamine 
 
 

 

 
 

 
 

 
 

 
 

-11.8 

Bis(5H-
dibenzo[a,d]cyclohepte
n-5-
yl)phenylphosphine  
 
 

 -11.8 

6((S)-3-
Benzylpiperazin-1-
Yl)-3-(Naphthalen-2-
Yl)-4-(Pyridin-4-
Yl)Pyrazine 
 

 

-11.7 
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Table S2. continued 
 

  

Difenacoum   
 

 
 

 
 

-11.7 

N-(1,3-benzodiazol-
2-yl)-3-
{[(4S,5S,6S,7R)-3-
({3-[(1,3-
benzodiazol-2-
yl)carbamoyl]phenyl
}methyl)-4,7-
dibenzyl-5,6-
dihydroxy-2-oxo-1,3-
diazepan-1-
yl]methyl}benzamide 
 
 
  

-11.6 

Dibenzo[a,h]pyrene  
 
 

 
 

 
 

-11.6 

Nitrate Ionophore V 
 
 

 
 

 
 

 

-11.6 

 
 
 
Table S3.  Primers.   

Probe Forward primer Reverse primer 
1218-1 TCAGCCGACATGTGCTTCTCC CACGACATGGTGCTGCCTTCC 
1218-2 GATGACCAATGCCGCGCTCAC CATGCGTTCAGCCGATCTGAC 
1219 GAATCCGTGCCGACCGAACTG CTTATCGCCGAGGATGAACG 
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Abstract 

Strains of the Burkholderia cepacia complex (Bcc) are Gram-negative opportunisitic 

bacteria that are capable of causing serious diseases, mainly in immunocompromised 

individuals. Bcc pathogens are intrinsically resistant to multiple antibiotics, including β-

lactams, aminoglycosides, fluoroquinolones and polymyxins.1-4 They are major pathogens in 

patients with cystic fibrosis (CF) and can cause severe necrotizing pneumonia, which is often 

fatal.5 Hopanoid biosynthesis is one of the major mechanisms involved in multiple 

antimicrobial resistance of Bcc pathogens.2 The hpnN gene of B. multivorans encodes an 

integral membrane protein of the HpnN family of transporters, which is responsible for 

shuttling hopanoids to the outer membrane.6 Here, we report crystal structures of B. 

multivorans HpnN, revealing a dimeric molecule with an overall butterfly shape. Each subunit 

of the transporter contains 12 transmembrane helices and two periplasmic loops that suggest a 

plausible pathway for substrate transport. Further analyses indicate that HpnN is capable of 

shuttling hopanoid virulence factors from the outer leaflet of the inner membrane to the 

periplasm. Taken together, our data suggest that the HpnN transporter is critical for multidrug 

resistance and cell wall remodeling in Burkholderia. 

 

Introduction 

Burkholderia multivorans is a successful human pathogen and a member of the B. 

cepacia complex (Bcc) that causes pneumonia in immunocompromised individuals with 

underlying lung diseases, such as cystic fibrosis (CF) and chronic granulomatous disease 

(CGD).7 Bcc consists of a group of at least 17 closely-related Gram-negative bacteria with 

extreme genetic capacity and metabolic diversity. All Bcc members can trigger chronic airway 

infections in CF patients and have emerged as opportunistic pulmonary pathogens.8 B. 

cenocepacia and B. multivorans are the two most commonly isolated species,9,10 which are 
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threats for outbreaks. Bcc infections in CF patients are associated with enhanced morbidity and 

mortality. They also have the capacity to cause rapid clinical deterioration with septicemia that 

leads to death. Several outbreaks of B. multivorans causing severe morbidity and mortality in 

both CF and non-CF patients have occurred.11-13 In 2013, the rapid emergence of a 

ceftazidime-resistant strain of B. multivorans in a CF patient was identified in the United 

States.12 It was found that the resistant strain maintained dominance, resulting in an overall 

decline in patient health and treatment efficiency. Subsequently, a widespread outbreak of 

infection caused by B. multivorans was reported from the Czech Republic.13 Surprisingly, this 

outbreak of B. multivorans affected non-CF victims with 24% mortality rate, indicating that B. 

multivorans is a significant and emerging threat beyond CF patients. 

Bcc pathogens are intrinsically resistant to a broad range of antimicrobials, including β-

lactams, fluoroquinolones, aminoglycosides, polymyxins and cationic peptides, creating a 

major challenge to the treatment of Bcc pulmonary infections.2 It has been reported that 

hopanoids play a predominant role in supporting membrane stability and barrier function in B. 

multivorans, thus participating in multidrug resistance.2,3 A mutant strain of B. multivorans 

lacking the ability to synthesize hopanoids exhibits hypersensitivity to polymyxin B and 

colistin.2 Hopanoids are pentacyclic triterpenoid lipids that are sterol analogues in prokaryotic 

membranes.14-16 Like cholesterols in eukaryotic membranes, hopanoids are capable of inserting 

in bacterial membranes and contributing to their stability and stiffness.17 Hopanoids help 

membranes withstand damaging stress conditions, including high temperature, low pH and the 

presence of antibiotics.2-4,17 Not all bacteria produce hopanoids, but they play a vital role in 

those that do make them. It has been shown that hopanoid production plays an important role 

in the physiology and pathogenesis of B. cenocepacia.4,18 

In spite of the importance of hopanoids in bacteria, the mechanism of intracellular 

hopanoid trafficking for cell wall remodeling has not been explored. A subfamily of the 
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resistance-nodulation-cell division (RND) superfamily of transporters,19 termed hopanoid 

biosynthesis-associated RND (HpnN) transporters,20 are responsible for shuttling hopanoids 

from the cytoplasmic membrane to outer membrane of Gram-negative bacteria. As an initial 

step to elucidate the mechanism of hopanoid transport, we here present the crystal structure of 

the B. multivorans HpnN transporter that is essential for cell wall biogenesis in this pathogen. 

A combination of the three-dimensional structure and genetic analysis allows us to identify 

important residues for the function of this membrane protein. 

 

Results 

Overall structure of HpnN 

B. multivorans HpnN consists of 877 amino acids (Fig. 1). Two distinct conformations 

of HpnN (forms I and II) were captured in two different forms of crystals (Table S1). In each 

structure, two monomers were found in the asymmetric unit arranged as a dimer (Figs. S1 and 

S2). Overall, the topology of HpnN is unique. The HpnN dimer is butterfly-shaped with a 

twofold symmetry axis perpendicular to the membrane plane (Fig. 2a). The overall structure of 

HpnN indicates that this membrane protein mainly constitutes the transmembrane and 

periplasmic domains. Viewed in parallel to the membrane, the dimer is about 110 Å tall, 100 Å 

wide and 52 Å thick.  

Each protomer of HpnN in the dimer contains 12 transmembrane helices (TMs 1-12 

and TMs 1ʹ-12ʹ, respectively). In addition, the monomer possesses a large periplasmic domain 

formed by two periplasmic loops between TMs 1 and 2 (loop 1), and between TMs 7 and 8 

(loop 2). Loop 1 is composed of 11 α-helices and four β-strands, whereas loop 2 constitutes 10 

α-helices and three β-strands. The TMs, α-helices and β-strands are designated numerically 

from the N- to C-termini: TM1 (a (2-13) and b (17-37)), α1 (45-48), α2 (56-65), α3 (67-70), 

β1 (73-79), α4 (82-102), β2 (106-109), α5 (115-124), α6 (127-149), α7 (153-170), α8 (175-
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194), β3 (215-222), α9 (236-247), α10 (249-253), β4 (255-260), α11 (262-273), TM2 (277-

295), TM3 (299-322), TM4 (331-359), TM5 (363-393), TM6 (398-429), TM7 (a (443-452) 

and b (454-474)), α12 (482-484), α13 (490-500), β5 (509-513), α14 (516-528), β6 (534-536), 

α15 (538-541), α16 (547-564), α17 (574-594), α18 (598-614), α19 (618-643), α20 (655-661), 

β7 (668-673), α21 (686-698), TM8 (705-738), TM9 (742-766), TM10 (775-796), TM11 (a 

(803-810) and b (812-828)) and TM12 (832-858). The N-terminal and C-terminal halves of the 

transmembrane region are assembled in a pseudo-symmetrical fashion. The TMs are 

membrane embedded. However, TM8 is significantly longer and protrudes into the periplasm. 

TM2 and TM8 directly tether the periplasmic subdomains PD1 and PD2, respectively (Fig. 

2b). A hairpin is formed in the middle section of each periplasmic loop (loops 1 and 2). These 

two α-helical hairpins contact one another through a coiled-coil interaction and form a four α-

helix bundle, contributing to the hairpin subdomain PD4. PD4 is connected to PD1 and PD2 

through an elongated α-helical subdomain PD3, which is composed of three α-helices (Fig. 

2b). Several long flexible loops are found to link each periplasmic subdomain, suggesting that 

the periplasmic domain of HpnN is quite flexible in nature. 

The crystal structure reveals that TMs 7, 8 and 9 are involved in the formation of the 

dimer. Dimerization occurs mainly through hydrophobic interactions, as the interaction surface 

is mostly hydrophobic in nature. Surprisingly, each protomer of HpnN forms a channel 

spanning the outer leaflet of the inner membrane and up to the periplasmic domain (Figs. 2b 

and S3). A cavity is formed within TMs 2, 4 and 11, which also creates the beginning section 

of the channel. This cavity runs horizontally along the surface of the outer leaflet of the inner 

membrane and then directly connects to the vertical portion of channel, leading to the 

periplasm. Potentially, this cavity may form a hopanoid binding site. Interestingly, within the 

vicinity of this cavity, L826 is conserved (Fig. 1). This residue may play an important role in 

recognizing hopanoids. The end of this channel is located at the top portion of PD1 and PD2, 
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where the short helix α5 is also involved in forming this exit. Alignment of protein sequences 

indicates that several conserved aromatic residues, including F117, F541 and W661 (Fig. 1), 

are found to line the wall of this exiting site. These conserved residues may play an important 

functional role for transporting hopanoids in this membrane protein. 

Transport of substrates by the RND family of transporters is driven by the proton-

motive-force (PMF). Within the transmembrane region, we found that the conserved residues 

D344, T818 and T819 (Fig. 1) of HpnN are in close proximity and seem to interact with each 

other to form a triad. These three residues probably create a proton-relay network to translocate 

protons for energy coupling.  

A comparison of the dimeric structures of forms I and II suggests that these two 

structures depict two different transient states of the transporter. Superimposition of the form I 

and form II structures of HpnN results in an overall rms deviation of 2.6 Å (Fig. 3). The major 

difference between these two structures is in the periplasmic domain of the transporter. This 

conformational change can be interpreted as a rigid-body swinging motion of the periplasmic 

domain with respect to the transmembrane domain (Fig. 3). Based on the structural 

information, this rotational motion may govern the opening and closing of the elongated 

channel formed by HpnN. The two flexible loops connecting TM1 and TM2 to the periplasmic 

domain appear to form the hinge, which also creates the narrowest region of the elongated 

channel. The conserved residue L48 is found in the vicinity of the narrowest region. This 

residue may be important for the gating of this transporter. 

 

Hopanoid screening using AutoDock Vina 

To elucidate if B. multivorans HpnN has the capacity to bind hopanoids, AutoDock 

Vina21 was used to calculate the potential binding modes of HpnN with a variety of hopanoids, 

including diploptene, 17β(H),21β(H)-hopane, 17α(H),21β(H)-hopane, and 17α(H)-22,29,30-
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trisnorhopan. Vina suggested that all of these ligands prefer to bind at the cavity formed within 

TMs 2, 4 and 11 (Fig. S4). Interestingly, the conserved residue L826 is frequently involved in 

contacting these four hopanoid compounds. The predicted binding free energies are between -

7.7 and -8.2 kcal/mol for these hopanoids. 

 

Mutagenesis studies 

As B. multivorans HpnN and B. thailandensis HpnN share 82% identity (Fig. S5), we 

turned to the null mutant strain B. thailandensis E264∆hpnN, which lacks the hpnN gene, for 

our mutagenesis studies and to elucidate the important function of the conserved HpnN amino 

acids. We made a plasmid pHERD20TΩhpnN that contains the hpnN gene of B. thailandensis. 

We then transformed these E264∆hpnN cells with pHERD20TΩhpnN, expressing B. 

thailandensis HpnN, or the empty vector pHERD20T. The knockout B. thailandensis 

E264∆hpnN cells, either alone or transformed with the empty vector pHERD20, could not 

grow in liquid Luria-Bertani broth (LB) in the presence of various antibiotics, including 

chloramphenicol, novobiocin and polymyxin B (Fig. 4). Surprisingly, B. thailandensis 

E264∆hpnN cells transformed with pHERD20TΩhpnN were capable of growing in liquid LB 

under these damaging conditions. The experiment suggests that HpnN is critical for mediating 

multidrug resistance and the expression of B. thailandensis hpnN in E264∆hpnN is able to 

compensate for the loss of the B. thailandensis hpnN gene. 

To determine whether the conserved residue D344, which forms a salt-bridge triad with 

T818 and T819, is important for the function of the transporter, we mutated this corresponding 

residue in B. thailandensis HpnN to tyrosine (D344Y) (Table S2). In B. multivorans HpnN, 

residues D344, T818 and T819 most likely establish the proton-relay network and translocate 

protons for energy coupling (Fig. 4). We therefore also replaced the corresponding residues of 

T818 and T819 in B. thailandensis HpnN by alanines to create the T818A and T819A mutant 
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transporters (Table S2). We expressed these mutant HpnN transporters in B. thailandensis 

E264∆hpnN cells. We then monitored the growth of these cells harboring the mutant 

transporter D344Y, T818A or T819A over time in liquid LB supplemented with 

chloramphenicol, novobiocin or polymyxin B. Similar to the knockout E264∆hpnN cells 

transformed with the empty vector, growth of cells expressing these mutant transporters was 

severely attenuated in these liquid media (Figs. 4 and 5). The data indicate that a mutation on 

residue D344, T818 or T819 abolishes the function of the HpnN transporter. 

 To understand if the conserved HpnN residues L48 and L826 that line the wall of the 

channel are crucial for transport function, we mutated these two corresponding leucines in B. 

thailandensis HpnN into phenylalanines to produce the single-point mutant transporters L48F 

and L826F. We found that mutations on these two residues abrogate cell growth in liquid LB 

supplemented with chloramphenicol, novobiocin or polymyxin B (Figs. 4 and 5), 

demonstrating that these two residues are necessary for the function of the transporter. 

The three conserved aromatic residues F117, F541 and W661 likely create the exiting site of 

the channel within the transporter. Therefore, we replaced each corresponding residue in B. 

thailandensis HpnN by arginine or histidine to make single-point mutants F117R, F541R and 

W661H. Again, B. thailandensis E264∆hpnN cells harboring these mutant transporters are 

retarded in growth in liquid LB supplemented with chloramphenicol, novobiocin or polymyxin 

B (Figs. 4 and 5), indicating the important role of these amino acids. 

 

Discussion 

In this paper, we reported crystal structures of the B. multivorans HpnN transporter, 

revealing a dimeric assembly of this membrane protein. Each subunit of HpnN creates a 

channel spanning the outer leaflet of the inner membrane and up to the periplasmic space. 

Based on additional experimental data, we believe that HpnN is capable of transferring 
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hopanoid lipids from the inner membrane to the periplasm. We suspect that the opening and 

closing of this channel is governed by a rigid-body swinging motion of the periplasmic domain 

of HpnN with respect to its transmembrane domain. Within the hpnN operon of B. multivorans, 

there is a smaller gene vacJ (virulence-associated chromosome locus J),6 encoding a 

periplasmic chaperone protein VacJ. It is likely that hopanoid trafficking in Gram-negative 

bacteria is a stepwise process and involves more than one protein machine to achieve the task.  

We propose that HpnN plays a major role in the intrinsic antimicrobial resistance of B. 

multivorans by shuttling hopanoids from the cytoplasmic membrane to outer membrane via a 

specific interaction with the periplasmic protein VacJ, which transfers hopanoids from HpnN 

to the outer membrane. To this point, the exiting area of the HpnN channel may also form a 

distinctive protein-protein interaction site for binding VacJ, allowing HpnN to directly transfer 

the bound hopanoid molecule to the VacJ chaperone. The final step may require the 

dissociation of HpnN and VacJ, which vehicles the bound hopanoid molecule to the outer 

membrane.  

 

Materials and Methods 

Cloning, expression and purification of B. multivorans HpnN 

Briefly, the full-length HpnN membrane protein containing a 6xHis tag at the C-

terminus was overproduced in E. coli BL21(DE3)ΔacrB cells, which harbors a deletion in the 

chromosomal acrB gene,  possessing pET15bΩhpnN. Cells were grown in 12 l of LB medium 

with 100 µg/ml ampicillin at 25oC. When the OD600 nm reached 0.5, the culture was treated with 

0.2 mM isopropyl-β-D-thiogalactopyranoside (IPTG) to induce hpnN expression, and cells 

were harvested within 15 h. The collected bacteria were resuspended in low salt buffer 

containing 100 mM sodium phosphate (pH 7.2), 10 % glycerol, 1 mM 

ethylenediaminetetraacetic acid (EDTA) and 1 mM phenylmethanesulfonyl fluoride (PMSF), 
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and then disrupted with a French pressure cell.  The membrane fraction was collected and 

washed twice with high salt buffer containing 20 mM sodium phosphate (pH 7.2), 2 M KCl, 10 

% glycerol, 1 mM EDTA and 1 mM PMSF, and once with 20 mM HEPES-NaOH buffer (pH 

7.5) containing 1 mM PMSF as described previously.22 The membrane protein was then 

solubilized in 2% (w/v) n-dodecyl-β-D-maltoside (DDM). Insoluble material was removed by 

ultracentrifugation at 100,000 x g. The extracted protein was purified with a Ni2+-affinity 

column. The purified protein was dialyzed and concentrated to 20 mg/ml in a buffer containing 

20 mM Na-HEPES (pH 7.5) and 0.05% DDM. A final purification step was performed using a 

G200 size exclusion column loaded with buffer solution containing 20 mM Na-HEPES (pH 

7.5) and 0.05% DDM. The purity of the HpnN protein (>95%) was judged using 10% SDS-

PAGE stained with Coomassie Brilliant Blue. The purified protein was then concentrated to 20 

mg/ml in a buffer containing 20 mM Na-HEPES (pH 7.5) and 0.05% DDM. 

For 6xHis selenomethionyl-substituted (SeMet)-HpnN protein expression, a 10 ml LB 

broth overnight culture containing E. coli BL21(DE3)ΔacrB/pET15bΩhpnN cells was 

transferred into 120 ml of LB broth containing 100 µg/ml ampicillin and grown at 37oC.  When 

the OD600 nm value reached 1.2, cells were harvested by centrifugation at 6000 rev/min for 10 

min, and then washed two times with 20 ml of M9 minimal salts solution.  The cells were re-

suspended in 120 ml of M9 media and then transferred into a 12 l pre-warmed M9 solution 

containing 100 µg/ml ampicillin. The cell culture was incubated at 25oC with shaking. When 

the OD600 nm reached 0.4, 100 mg/l of lysine, phenylalanine and threonine, 50 mg/l isoleucine, 

leucine and valine, and 60 mg/l of L-selenomethionine were added. The culture was induced 

with 0.2 mM IPTG after 15 min. Cells were then harvested within 15 h after induction. The 

procedures for purifying SeMet-HpnN were identical to those of the native protein. 
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Crystallization of B. multivorans HpnN 

Crystals of the HpnN protein were obtained using sitting-drop vapor diffusion.  The 

forms I crystals were grown at room temperature in 24-well plates with the following 

procedures. A 2 µl protein solution containing 20 mg/ml HpnN in 20 mM Na-HEPES (pH 7.5) 

and 0.05% (w/v) DDM was mixed with a 2 µl of reservoir solution containing 16% PEG 2000, 

0.1 M sodium citrate (pH 3.5) and 0.2 M Li2SO4. The resultant mixture was equilibrated 

against 500 µl of the reservoir solution at 25oC. For the form II crystals, a 2 µl protein solution 

containing 20 mg/ml HpnN in 20 mM Na-HEPES (pH 7.5) and 0.05% (w/v) DDM was mixed 

with a 2 µl of reservoir solution containing 15% PEG 2000, 0.1 M sodium citrate (pH 4.0) and 

0.2 M (NH4)2SO4. The resultant mixture was equilibrated against 500 µl of the reservoir 

solution at 25oC.  The crystallization conditions for SeMet-HpnN were the same as those for 

crystallizing the form II crystals. Crystals of HpnN (both forms I and II) and SeMet-HpnN 

grew to a full size in the drops within a month. Typically, the dimensions of the crystals were 

0.2 mm x 0.2 mm x 0.2 mm. Cryoprotection of these crystals was achieved by raising the 

glycerol concentration stepwise to 30% with a 5% increment in each step. Crystals of the 

tungsten cluster derivative were prepared by incubating the form I crystals in solution 

containing 18% PEG 2000, 0.1 M sodium citrate (pH 3.5), 0.2 M Li2SO4, 0.05% (w/v) DDM 

and 0.5 mM (NH4)2W6(µ-O)6(µ-Cl)6Cl6 for 5 hours at 25oC. 

 

Data collection, structural determination and refinement  

All diffraction data were collected at 100K at beamline 24ID-C located at the Advanced 

Photon Source, using a Platus 6M detector (Dectris Ltd., Switzerland). Diffraction data were 

processed using DENZO and scaled using SCALEPACK.23 The form I crystals of HpnN 

belong to space group P21 (Table S1). Based on the molecular weight of HpnN (93.6 kDa), the 

asymmetric unit is expected to contain two transporter molecules with a solvent content of 
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69.2%. The heavy-atom derivative (W6(µ-O)6(µ-Cl)6Cl6
2- cluster) was isomorphous with the 

native crystal (Table S1). 12 tungsten cluster sites were identified using SHELXC and 

SHELXD24 as implemented in the HKL2MAP package.25 These heavy-atom sites were refined 

by single isomorphous replacement with anomalous scattering (SIRAS), using the program 

AutoSol implemented in PHENIX.26 These phases were then subjected to density modification, 

non-crystallographic symmetry (NCS) averaging and phase extension to the full resolution 

(3.39 Å) of the native data using the program RESOLVE.27 The resulting phases were of 

excellent quality, which allowed us to trace most of the molecules. After tracing the initial 

model manually using the program Coot,28 the model was refined using PHENIX26 leaving 5% 

of reflections in Free-R set. Iterations of refinement using PHENIX26 and CNS29 and model 

building in Coot28 lead to the 3.39 Å-resolution structural model of the HpnN transporter with 

excellent geometrical characteristics (Table S1).  

The form II crystals of HpnN also took the space group P21 (Table S1). The SeMet data 

were employed to collect additional phase information. Molecular replacement with single-

wavelength anomalous diffraction (MR-SAD) phasing, using the program Phaser,30 were 

utilized to obtain phases. A monomer of the form I structure was used as the search model. 

Two HpnN molecules were found in the asymmetric unit. The full-length HpnN protein 

consists of 16 methionine residues and all of these 16 selenium sites were identified in each 

protomer of the protein (32 total selenium sites in the asymmetric unit). The phases were then 

subjected to density modification and phase extension to native 3.77 Å-resolution using the 

program RESOLVE.27 The SeMet data not only augmented the experimental phases but also 

helped in tracing the molecules by anomalous difference Fourier maps in which we could 

ascertain the proper registry of SeMet residues. The model was constructed using Coot.28 

Iterations of refinement using PHENIX26 and CNS29 and model building using Coot28 lead to 

the final form II structural model of the HpnN transporter at a resolution of 3.77 Å (Table S1).    
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Construction of complementing plasmid for B. thailandensis 

B. thailandensis E264 and its null mutant strain E264∆hpnN [BTH_II2350-

111::ISlacZ-PrhaBo-Tp/FRT)],31 which lacks the hpnN gene, were obtained from the 

Burkholderia thailandensis Mutant Library (Department of Genome Sciences, University of 

Washington, Seattle). The deletion of hpnN in the null mutant strain was confirmed by 

PCR.31,32 The hpnN (BTH_II2350) ORF from genomic DNA of B. thailandensis E264 was 

amplified by PCR using the primers 5ʹ-

CATACCCATGGGATCTGATAAGAATTCATGCTGACTTCCGTCCTCGTC-3ʹ and 5ʹ-

GATCCCCGGGTACCGAGCTCTTAATGATGATGATGGTGATGTTCATCGATTCCTTG

CGATTGGTTTAAACTCAATGGTGATGGTGATGATGGACGGCCTTGTGTGATTTGAC

C-3ʹ to produce a product that would encode the B. thailandensis HpnN recombinant protein 

containing a 6xHis tag at the C-terminus. The corresponding PCR product was extracted from 

agarose gel. The vector pHERD20T33 was digested with EcoRI (NEB, MA) and gel purified. 

The purified product was inserted into the linearized pHERD20T vector using the SLiCE34 

method. The resulting recombinant plasmid, pHERD20TΩbt_hpnN, was transformed into 

DH10b cells and the transformants were selected on LB agar plates containing 100 µg/ml 

ampicillin. The presence of the correct hpnN sequence of B. thailandensis in the plasmid 

construct was verified by DNA sequencing. 

     

Site-directed mutagenesis  

We performed site-directed mutagenesis on residues L48, F117, D344, F541, W661, 

T818, T819 and L826 of B. thailandensis HpnN to generate single point mutant transporters 

L48F, F117R, D344Y, F541R, W661H, T818A, T819A and L826F. The primers used for these 

mutations are listed in Table S2. All oligonucleotides were purchased from Integrated DNA 

Technologies, Inc. (Coralville, IA) in a salt-free grade. 
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Plasmid mobilization 

The plasmid pHERD20TΩbt_hpnN was introduced into E264∆hpnN by triparental 

mating, utilizing the helper plasmid pRK2013. Overnight cultures of the donor 

(DH10b/pHERD20TΩbt_hpnN), helper (DH5α/pRK2013) and recipient (E264∆hpnN) cells 

were grown in LB supplemented with 100 µg/ml ampicillin, 50 µg/ml kanamycin and 15 

µg/ml polymyxin B, respectively. The cultures were individually diluted 100 fold using LB 

supplemented with 100 µg/ml ampicillin, 50 µg/ml kanamycin and 15 µg/ml polymyxin B, 

respectively. Cells were then individually grown at 37oC until OD600 nm reached 0.5. An aliquot 

of 400 µl of each culture was taking from each culture. These three aliquots were mixed 

together and incubated for 1 h at 37oC without shaking. 100 µl of the mixture was placed onto 

an LB agar plate supplemented with 10 mM MgSO4 and incubated for 16 h at 37oC. Bacterial 

colonies were then scraped from the agar plate and suspended in 1 ml LB medium.  Five 10-

fold serial dilutions were performed. 100 µl of the resulting cell suspension was plated on LB 

agar containing 15 µg/ml polymyxin B and 100 µg/ml carbenicillin. The plate was then 

incubated for 2-3 days at 37oC to obtain colonies of E264∆hpnN/pHERD20TΩbt_hpnN cells. 

The triparental mating procedures for cells carrying the mutant transporters were identical to 

those as described above.      

 

Cell growth in the presence of antibiotics 

The sensitivity to chloramphenicol, novobiocin and polymyxin B of B. thailandensis 

E264∆hpnN harboring pHERD20TΩbt_hpnN, expressing the wild-type or mutant transporters, 

or carrying the pHERD20T empty vector were tested in liquid LB. Cells were grown overnight 

in LB medium containing 15 µg/ml polymyxin B and 100 µg/ml carbenicillin at 37oC. Cells 

were adjusted to an OD600 nm of 0.005 in LB supplemented with 5 µg/ml chloramphenicol, 1  
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µg/ml novobiocin or 1 mg/ml polymyxin B. Cells were inoculated in 96-well microtiter plates 

(Corning, NY) and incubated in a 37oC shaker at 200 rpm. Growth was recorded every 20 min 

using a Bio Tek plate recorder (Winooski, VT). 

 

Accession Codes 

Atomic coordinates and structure factors for the structures of HpnN have been 

deposited at the RCSB Protein Data Bank with accession codes 5KHN (form I) and 5KHS 

(form II).  
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Fig. 1. Sequence and topology of B. multivorans HpnN.  Alignment of the amino acid 

sequences was done using CLUSTAL W.  *, identical residues; :, >60% homologous residues.  

Secondary structural elements are indicated: TM, transmembrane segment; α, helix; β, strand.  

The sequence and topology of B. multivorans HpnN are shown at the top (PD1, orange; PD2, 

red; PD3, green; PD4, magenta).  Conserved residues involved in lining the channel or proton 

relay network of the protein are highlight with cyan bars. (HpnN, hopanoid biosynthesis 

associated RND; MmpL, mycobacterial membrane protein large; Bm, B. multivorans; Bc, B. 

cenocepacia; Bp, B. pseudomallei; Pa, P. aeruginosa; Bl, B. mallei; Rp, R. palustris; Gb, G. 

bethesdensis; Rm, R. mucosa). 
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Fig. 2.  Structure of the B. mulitvorans HpnN transporter.  (a) Ribbon diagram of a dimer of 

HpnN viewed in the membrane plane.  The right subunit of the dimer is colored using a 

rainbow gradient from the N-terminus (blue) to the C-terminus (red), whereas the left subunit 

is colored gray.  Overall, the HpnN dimer forms a butterfly-shaped structure.  (b) Each subunit 

of the HpnN transport forms a channel (colored gray) spanning the outer leaflet of the inner 

membrane and up to the periplasmic domain. This figure depicts the left subunit of the form I 

structure of the HpnN dimer. The orientation of this HpnN subunit has been rotated by 60o 

counterclockwise, based on the vertical C2 symmetry axis of the HpnN dimer, when compared 

with the orientation of (a). This channel was calculated using the program CAVER 

(http://loschmidt.chemi.muni.cz/caver). The transmembrane helices are colored slate. PD1, 

PD2, PD3 and PD4 are colored orange, red, green and magenta, respectively. 
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 Fig. 3. Structural comparison of forms I and II of the HpnN transporter.  (a) Superimposition 

of the dimeric structures of forms I and II (green, form I; red, form II).  For clarity, only the left 

subunit, PD1-PD4, is labeled.  Each arrow indicates a rigid body swinging motion of the 

periplasmic domain of each monomer, allowing it to come closer to the next subunit within the 

dimer. (b) Superimposition of the dimeric structures of forms I and II (green, form I; red, form 

II) viewed from the periplasmic side. This view depicts that the two monomers of the form I 

structure are at least 6 Å closer to each other at the dimer interface when compared with those 

of the form II structure. 
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Fig. 4. Important conserved amino acids of HpnN. (a) Ion pairs in the transmembrane domain 

viewed from the cytoplasmic side.  Residues D344 of TM4, and T818 and T819 of TM11 that 

form ion pairs, which may play an important role in proton translocation, are in green sticks. 

(b) Side view of a protomer of HpnN that forms a channel. Residues L48, F117, F541, W661 

and L826, which line the wall of the channel are in magenta sticks. (c) Time course of the 

growth of B. thailandensis E264∆hpnN cells harboring mutants of the proton relay network. 

Cells expressing the mutant transporter D344Y, T818A or T819A could not grow in liquid LB 

in the presence of 5 µg/ml chloramphenicol (black, E264 cells; red, 

E264∆hpnN/pHERD20TΩbt_hpnN cells expressing HpnN ;magneta, E264∆hpnN cells; blue, 

E264∆hpnN/pHERD20T cells; cyan, cells expressing D344Y; orange, T818A; green, T819A). 

Error bars represent standard deviation (n = 3). (d) Time course of the growth of B. 
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thailandensis E264∆hpnN cells harboring mutant transporters L48F, F117R, F541R, W661H 

L826F and G833F. Except mutant G833F, growth of cells expressing the other mutant 

transporters was severely attenuated in liquid LB supplemented with 5 µg/ml chloramphenicol 

(purple, L48F; gray, F117R; pink, F541R; dark yellow, W661H; navy blue, L826F; G833F, 

yellow). Growths of E264 cells, E264∆hpnN cells, E264∆hpnN/pHERD20TΩbt_hpnN cells 

expressing B. thailandensis HpnN and E264∆hpnN/pHERD20T cells carrying the empty vector 

are shown is (a). Error bars represent standard deviation (n = 3).  
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Fig. 5. Growth of cells in the presence of antibiotics. B. thailandensis E264∆hpnN cells 

expressing the mutant transporter L48F, F117R, D344Y, F541R, W661H, T818A, T819A or 

L826F were retarded in growth in liquid LB supplemented with (a) 5 µg/ml chloramphenicol, 

(b) 1 µg/ml novobiocin or (c) 1 mg/ml polymyxin B compared with cells expressing wild-type 

B. thailandensis HpnN, whereas growth of mutant G833F did not get affected in presence of 

above three antibiotics. Error bars represent standard deviation (n = 3). “*” indicates values of 

E264∆hpnN/pHERD20T and E264∆hpnN cells expressing the mutant transporters that are 

significantly lower than that of E264∆hpnN/pHERD20TΩbt_hpnN expressing wild-type HpnN 

(P < 6 x 10-6 for (a), P < 2 x 10-6 for (b) and P < 7 x 10-5 for (c); student’s t-test). 
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Fig. S1. Stereo view of the electron density maps of HpnN (form I) at a resolution of 3.39 Å. 

(a) The electron density maps are contoured at 1.2 σ. The Cα traces of the HpnN dimer in the 

asymmetric unit are included. (b) Anomalous signals of the 12 W6(µ-O)6(µ-Cl)6Cl6
2- cluster 

sites (contoured at 3 σ) found in the asymmetric unit are colored magenta. The Cα traces of the 

two HpnN monomers are colored green and white. (c) Representative section of the electron 

density in the vicinity of TMs 7, 11 and 12 of HpnN. The electron density (colored light blue) 

is contoured at the 1.2 σ level and superimposed with the final refined model (green, carbon; 

red, oxygen; blue, nitrogen).  
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Fig. S2. Stereo view of the electron density maps of HpnN (form II) at a resolution of 3.77 Å. 

(a) The electron density maps are contoured at 1.2 σ. The Cα traces of the HpnN dimer in the 

asymmetric unit are included. (b) Anomalous maps of the 32 selenium sites (contoured at 3 σ). 

Two protomers forming a dimer of HpnN are found in the asymmetric unit. Each protomer 

contributes 16 selenium sites corresponding to the 16 methionines (red). The Cα traces of the 

two HpnN monomers are colored green and white. (c) Representative section of the electron 

density in the vicinity of TMs 7, 11 and 12 of HpnN. The electron density (colored white) is 

contoured at the 1.2 σ level and superimposed with the final refined model (green, carbon; red, 

oxygen; blue, nitrogen). (d) Composite anomalous maps of the Hg sites (contoured at 3 σ) of 

the H90C and Q604C mutants. These Hg sites confirm the right location of residues H90 

(cyan) and Q604 (orange), respectively.     
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Fig. S3. Channel in the HpnN transporter. (a) Channel formed by each subunit of the form I 

structure of HpnN. Each channel is colored gray. The left and right subunits of HpnN are 

colored yellow and red, respectively. (b) Channel formed by each subunit of the form II 

structure of HpnN. Each channel is colored gray. The left and right subunits of HpnN are 

colored green and orange, respectively. The calculations were done using the program CAVER 

(http://loschmidt.chemi.muni.cz/caver). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4. Protein sequence alignment of B. multivorans HpnN and B. thailandensis HpnN. 

Alignment of the amino acid sequences was done using CLUSTAL W.  *, identical residues; :, 

>60% homologous residues.  The alignment indicates that these two proteins share 82% 

identity. Conserved amino acids that are important for the function of these two transporters 

are highlighted with yellow bars (Bm, B. multivorans; Bt, B. thailandensis).  
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Fig. S5.  Comparison of the structures of HpnN and AcrB. Superimposition of a subunit of 

HpnN (green) onto a subunit of AcrB (red) (pdb code: 2DRD), resulting in a high RMSD of 

43.8 Å for 832 Cα atoms. 

 

 

 

 

 

 

S5 



www.manaraa.com

  

 

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S6.  Representative gel filtration experiment. The experiment demonstrated that HpnN 

exists as a dimer in solution. The y axis values were defined as: Kav = (Ve – V0)/(VT – V0), 

where VT, Ve, and V0 are the total column volume, elution volume, and void volume of the 

column, respectively. Standards used were the trimeric N. gonorrhoeae MtrE channel (Mr 

145,408) and monomeric N. gonorrhoeae MtrD efflux pump (Mr 341,712). The void volume 

was measured using blue dextran (Mr 2,000,000). 
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Fig. S7. PMF-dependence of the HpnN transporter. Intravesicular pH changes of the (a) wild-

type HpnN proteoliposomes, (b) D344Y HpnN proteoliposomes and (c) empty vesicles were 

monitored by the BCECF fluorescence. Before the addition of HCl, both the extravesicular and 

intravesicular pHs were at 7.5. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S8. Growth of cells in the absence and presence of antibiotics. (a) The knockout B. 

thailandensis E264∆hpnN and E264∆vacJ cells, either alone or transformed with the empty 

vector pHERD20T, were capable of growing in liquid LB (black, E264; magenta, E264∆hpnN; 

purple, E264∆hpnN/pHERD20T; red, E264∆hpnN/pHERD20TΩbt_hpnN; green, E264∆vacJ; 
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orange, E264∆vacJ/pHERD20T; blue, E264∆hpnN/pHERD20TΩbt_vacJ. (b) The knockout B. 

thailandensis E264∆vacJ cells, either alone or transformed with the empty vector pHERD20T, 

were retarded in growth in liquid LB supplemented with 1 mg/ml polymyxin B. Error bars 

represent standard deviation (n = 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S9. Binding site prediction for HpnN. The predicted bound diploptene, 17β(H),21β(H)-

hopane, 17α(H),21β(H)-hopane, and 17α(H)-22,29,30-trisnorhopan are colored yellow, red, 

slate and orange, respectively. 
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Fig. S10. Isothermal titration calorimetry for the binding of 17β(H),21β(H)-hopane. (a) 

Representative isothermal titration calorimetry for the binding of 17β(H),21β(H)-hopane to 

HpnN. (Upper Panel) Each peak corresponds to the injection of 10 µl of 200 µM HpnN in 

buffer containing 20 mM Tris-HCl pH 7.5, 0.03% DDM and 3% DMSO into the reaction 

containing 10 µM 17β(H),21β(H)-hopane in the same buffer. (Lower Panel) Cumulative heat 

of reaction is displayed as a function of the injection number. The solid line is the least-square 

fit to the experimental data, giving a KD of 9.1 ± 1.2 µM. (b) Representative isothermal 

titration calorimetry for the binding of 17β(H),21β(H)-hopane to the L826F mutant. (Upper 

Panel) Each peak corresponds to the injection of 10 µl of 200 µM L826F in buffer containing 

20 mM Tris-HCl pH 7.5, 0.03% DDM and 3% DMSO into the reaction containing 10 µM 

17β(H),21β(H)-hopane in the same buffer.  (Lower Panel) Cumulative heat of reaction is 

displayed as a function of the injection number. The solid line is the least-square fit to the 

experimental data, giving a KD of 59.2 ± 14.5 µM. (C) Representative isothermal titration 

calorimetry for the binding of 17β(H),21β(H)-hopane to VacJ. (Upper Panel) Each peak 
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corresponds to the injection of 10 µl of 200 µM VacJ in buffer containing 20 mM Tris-HCl pH 

7.5, 0.03% DDM and 3% DMSO into the reaction containing 10 µM 17β(H),21β(H)-hopane in 

the same buffer.  (Lower Panel) Cumulative heat of reaction is displayed as a function of the 

injection number. The solid line is the least-square fit to the experimental data, giving a KD of 

0.3 ± 0.02 µM. 

 

 

 

 

 

 

Fig. S11. Expression level of the HpnN transporters. An immunoblot against HpnN of crude 

extracts from 50 µg dry cells of strain B. thailandensis E264∆hpnN expressing the HpnN 

transporters (wild-type, lane 1; L48F, lane 2; F117R, lane 3; F541R, lane 4; W661H, lane 5; 

L826F, lane 6; D344Y, lane 7; T818A) is shown.  
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Table S1.  Data collection, phasing and structural refinement statistics of HpnN.  
 

 Form I Form II 

 [W6(µ-
O)6(µ-

Cl)6Cl6]2- 
 Se 

(peak) 
Data Collection         
Wavelength (Å) 0.98 0.98 1.25 0.98  
Space group P21 P21 P21 P21  

Resolution (Å) 100 – 3.39       100 – 3.77 100 – 3.42 
100 – 
4.80  

 (3.53 – 3.39)    (3.90 – 3.77) (3.55 – 3.42) 
(4.97 – 
4.80)  

Cell constants (Å)      
     a 111.85 112.16 112.07 112.61  
     b 130.25 143.37 131.14 146.13  
     c 112.06 112.66 112.09 112.57  
     α, β, γ (°) 

90, 113.6, 90 90, 114.1, 90 90, 90, 90 
90, 113.4, 

90  
Molecules in ASU 2 2 2 2  
Redundancy 10.5 (10.3) 3.8 (3.8) 3.2 (2.6) 10.5 (4.8)  
Total reflections 9,992,420 2,649,297 48,922 1,019,156  
Unique reflections 39,354 33,109 14,543 16,358  

Completeness (%) 99.9 (100) 99.5 (99.5) 95.5 (90.7) 
98.6 

(98.9)  

CC½ (%) 99.4 (50.9) 99.8 (50.9) 97.5 (58.6) 
99.5 

(58.9)  
I / σ 12.9 (1.2) 13.5 (1.1) 12.0 (1.4) 13.6 (1.1)  
Phasing   
Number of sites    12 32 
Figure of merit   0.50 0.61 
Refinement        
Resolution (Å) 50 – 3.39 50 – 3.77   
Rwork (%)  26.96 26.20   
Rfree (%)  32.06 30.72   
RMSD bond lengths (Å) 0.004 0.003   
RMSD bond angles (°) 0.691 0.637   
Ramachandran plot         
most favoured (%) 91.6 90.9   
additional allowed (%) 7.5 8.3   
generously allowed (%) 1.0 0.8   
disallowed (%) 0 0   
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Table S2.  Data collection of the H90C and Q604C mutants.  
 

 H90C Q604C 
Data Collection     
Wavelength (Å) 0.98 0.98  
Space group C2221 C2221  
Resolution (Å) 100 – 3.85       100 – 4.00  
 (3.99 – 3.85) (4.14 – 4.00)  
Cell constants (Å)    
     a 124.20 123.81  
     b 189.77 189.19  
     c 142.49 143.25  
     α, β, γ (°) 90, 90, 90 90, 90, 90  
Molecules in ASU 1 1  
Redundancy 12.2 (8.8) 8.8 (8.1)  
Total reflections 5,333,281 1.063,659  
Unique reflections 15,969 14,594  
Completeness (%) 97.4 (85.4) 100 (100)  
CC½ (%) 99.4 (75.7) 99.7 (67.4)  
I / σ 21.2 (1.5) 17.8 (1.5)  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Table S3. Thermodynamic parameters for 17β(H),21β(H)-hopane binding. 
 

 KD (µM) ∆H (kcal/mol) ∆S (cal•mol•deg-1) N 

HpnN  9.1 ±1.2 -12.5 ± 1.0 -19.0 1.08 ± 0.07 

L826F 59.2 ± 14.5 -26.0 ± 9.0 -67.7 1.06 ± 0.16 

VacJ  0.3 ± 0.02 -5.5 ± 36.7 11.3 0.99 ± 0.01 
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Table S4. Primers for site-directed mutagenesis. 
 

       Primer Sequence 
L48 forward 5ʹ-CATCAGCAAGTTCGTCGAGAACGACCCGAAATG-3ʹ 
L48 reverse 5ʹ-CGTTCTCGACGAACTTGCTGATGTCGGTGTTG-3ʹ 
F117R forward 5ʹ-CCGCTCCACGAGCACGACGGGCTGCTG-3ʹ 
F117R reverse 5ʹ-GTCGTGCTCGTGGAGCGGGCCGCCTCC-3ʹ 
D344Y forward 5ʹ-CTCGGCGTCTATTTCGCGATCCAGTACGGCGTC-3ʹ 
D344Y reverse 5ʹ-GATCGCGAAATAGACGCCGAGACCGACGAAC-3ʹ 
F541R forward 5ʹ-GCTGTCGACCCGCATTCCCGATGCGCAGCC-3ʹ 
F541R reverse 5ʹ-CATCGGGAATGCGGGTCGACAGCGTCGTCGTG-3ʹ 
W661H forward 5ʹ-CGTGCGCGACCATGTCGCGCCGGACGGCC-3ʹ 
W661H reverse 5ʹ-GTCCGGCGCGACATGGTCGCGCACGATCTGCGG-3ʹ 
T818A forward 5ʹ-CAGCGCCGCGGCGACGGCCACCGCGTTCG-3ʹ 
T818A reverse 5ʹ-GTGGCCGTCGCCGCGGCGCTGAACAGCAC-3ʹ 
T819A forward 5ʹ-CAGCGCCGCGACGGCTGCCACCGCGTTCGGCAGC-3ʹ 
T819A reverse 5ʹ-GAACGCGGTGGCAGCCGTCGCGGCGCTGAACAGC-3ʹ 
L826F forward 5ʹ-GTTCGGCAGCTTTTGGCTGTCGCATCATCCG-3ʹ 
L826F reverse 5ʹ-CGACAGCCAAAAGCTGCCGAACGCGGTGG-3ʹ 
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Abstract 

Resistance-nodulation-cell division (RND) efflux pumps are integral membrane 

proteins that catalyze the export of substrates across cell membranes. Within the 

hydrophobe/amphiphile efflux (HAE) subfamily, these RND proteins largely form trimeric 

efflux pumps. The drug efflux process has been proposed to entail a synchronized motion 

between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug 

molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance 

energy transfer (sm-FRET) imaging to elucidate the structures and functional dynamics of the 

Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a 

very unique conformation. A direct observation of transport dynamics in individual CmeB 

trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes 

conformational transitions uncoordinated and independent of each other. Further analyses 

allow us to propose a simple model for transport mechanism that the CmeB protomers function 

independently within the trimer. 

 

Introduction 

Campylobacter jejuni is a major causative agent of human enterocolitis and is 

responsible for more than 400 million cases each year worldwide (1, 2). The infection can 

trigger an autoimmune response that is associated with the development of Guillain-Barre 

syndrome, an acute flaccid paralysis caused by degeneration of the peripheral nervous system 

(2). C. jejuni is widely distributed in the intestinal tracts of animals and is transmitted to 

humans via contaminated food, water or raw milk. Fluoroquinolones and macrolides are 

frequently prescribed for the treatment of human campylobacteriosis (3). Unfortunately, 

Campylobacter has developed resistance to these antimicrobials, especially fluoroquinolones 

(4-6). Recently, the Centers for Disease Control and Prevention have designated antibiotic-
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resistant Campylobacter as a serious antibiotic resistance threat in the USA. Resistance of 

Campylobacter to antibiotics is mediated by multiple mechanisms (5, 7). However, multidrug 

efflux is an effective mechanism and one of the major causes of failure of drug-based 

treatments of infectious diseases. In C. jejuni, these multidrug efflux pumps contribute 

significantly to both intrinsic and acquired resistance to a broad range of antimicrobials and 

toxic compounds. Antibiotic resistance not only compromises the effectiveness of clinical 

therapy, but also affects the duration of clinical treatment. It has been shown that acquisition of 

fluoroquinolone resistance confers a fitness advantage on C. jejuni in the animal host (8). Thus, 

novel strategies are needed to combat antibiotic resistant Campylobacter. 

The best characterized multidrug efflux system in C. jejuni is the Cme (Campylobacter 

multidrug efflux) tripartite system (9-11). The Cme locus consists of three tandemly linked 

genes (cmeABC) encoding protein components of the tripartite Cme efflux pump (CmeA, 

CmeB and CmeC), where all three components are absolutely required for substrate expulsion. 

This tripartite system is composed of the CmeB efflux pump, an inner membrane resistance-

nodulation-cell division (RND) (12) transport protein that contains substrate binding sites and 

transduces the electrochemical energy required for pumping drugs out of the cell; the CmeA 

periplasmic protein, a member of the membrane fusion protein family; and the CmeC outer 

membrane associated protein that is integral to the outer membrane. Mutations on this tripartite 

system have been found to have a drastic effect on drug susceptibility (9, 13).  

To understand the transport mechanism of the CmeB efflux pump from C. jejuni, we 

here define the X-ray structures of this membrane protein, which assembles as a trimer. Using 

sm-FRET imaging, we demonstrate that each CmeB protomer within the trimer is able to 

export drugs independently.  
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Results 

Overall structure of CmeB 

Two distinct conformations of CmeB with space groups C2 (form I) and P1 (form II) 

were captured in two different forms of crystals (Figs.1, S1, S2 and Table 1). Overall, CmeB 

adopts the fold of a typical RND-type protein and forms a homotrimer, with its pseudo 

threefold symmetrical axis positioning perpendicular to the membrane surface. Each subunit of 

CmeB contains 12 transmembrane helices (TM1-TM12) and a large periplasmic domain 

created by two extracellular loops between TM1 and TM2, and between TM7 and TM8, 

respectively. This periplasmic domain can be divided into six subdomains: PN1, PN2, PC1, 

PC2, DN and DC (Fig. 1a). Subdomains PN1, PN2, PC1 and PC2 form the pore domain, with 

PN1 making up the central pore and stabilizing the trimeric organization. Subdomains DN and 

DC, however, contribute to form the docking domain of the pump.  

A cleft is formed between subdomains PC1 and PC2. This cleft creates an entrance, 

allowing for substrates to move into the pump through the periplasm. Deep inside the cleft, the 

CmeB pump forms a large internal cavity. In AcrB, this cavity has been shown to form an 

important binding site, which plays a predominant role in recognizing substrates for export (14, 

15). Recently, a drug resistance-enhanced variant of CmeB has been identified in clinical 

isolates of C. jejuni. This mutant pump is able to confer high-level bacterial resistance to 

multiple antibiotics, including chloramphenicol, ciprofloxacin, erythromycin and tetracycline 

(Yao et al., 2016). Interestingly, 22 mutated residues are found to localize within this drug-

binding cavity. The corresponding amino acids of many of these mutated residues, including 

M607L, A152D, T88Q, M292I and M571L, have been observed to be critical for multidrug 

binding in AcrB (14, 15).  

The structures of AcrB indicate that this multidrug efflux pump is capable of forming 

an asymmetric trimer, in which the three protomers are distinct and display different 



www.manaraa.com

  

 

97 

conformational states (“access”, “binding” and “extrusion”) (14, 16, 17). This structural 

dissimilarity has led to a proposed transport mechanism that the three protomers of an RND 

transporter must cooperate and synchronize to go through these three different states to export 

drugs. In both the “access” and “binding” protomers of AcrB, the periplasmic cleft created by 

subdomains PC1 and PC2 are open. However, this cleft is closed in the “extrusion” protomer. 

Thus, the asymmetric trimer of AcrB features a conformational state of two periplasmic clefts 

open and one cleft closed. During drug binding and extrusion, it was proposed that the three 

periplasmic clefts within the trimer have to open and close accordingly in order to advance the 

transport cycle.    

Both crystal structures of CmeB depict that this pump also forms an asymmetric trimer. 

In the form I structure, the three periplasmic clefts of the CmeB trimer are closed (Fig. 1b). 

Although the conformations of the three monomers are different from each other, they are 

more similar to the “extrusion” form of AcrB. A channel for extrusion is found in each 

protomer of our form I structure (Fig. 2a and b). We therefore assigned the conformational 

state of these three protomers as the “extrusion” form. 

Surprisingly, in the form II structure, the periplasmic cleft of one of the protomers is 

open (Fig. 1c), albeit similar to the conformation of the “binding” state of AcrB. An elongated 

channel is found in the periplasmic domain of this protomer. It was observed that this channel 

leads through the opening of the periplasmic cleft, exposed to solvent in the periplasm (Fig. 2c 

and d). We labeled this conformer as the “binding” form of CmeB. However, the periplasmic 

clefts of the other two protomers are closed in conformation. One of these two CmeB 

molecules is more related to the structure of the “extrusion” conformers of the form I structure. 

Like the three protomers of the form I structure, the periplasmic domain of this conformer also 

creates an extrusion channel (Fig. 2c and d). Thus, this conformer was classified as the 

“extrusion” form. Interestingly, the other CmeB molecule displays a distinct conformation, 
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forming a new state that is different from the “extrusion” form. No channel was found in this 

conformer (Fig. 2c and d). This conformation probably represents one of the intermediates that 

the CmeB pump must go through during the transport cycle. However, the conformation of this 

protomer is similar to the “resting” state of apo-CusA (18, 19), a specific heavy-metal RND 

efflux pump that recognizes Cu(I) and Ag(I) ions. We thus designated this conformation as the 

“resting” state of the CmeB efflux pump.  

Our structures of CmeB do not show the typical conformation of an asymmetric trimer 

with two periplasmic clefts open and one cleft closed. We then went through the existing 

crystal structures of these RND proteins, including AcrB (14, 15, 20-22), MexB (23), MtrD 

(24) and CusA (18, 25), available in the protein data bank. We found that the trimer can have 

three periplasmic clefts open or closed at a time, in addition to the asymmetric conformation of 

the AcrB trimer (Fig. S3). Based on this structural information, we postulated that individual 

protomers of these trimeric RND pumps could bind and export substrates independently 

instead of operating in a synchronized fashion. Thus, each protomer may autonomously go 

through a sequence of conformational transitions, which lead to the extrusion of substrates 

through a particular protomer. This is evidenced through the heterotrimeric MdtB2C efflux 

pump, where the MdtB and MdtC subunits function differently (26). It was found that MdtC is 

likely to be responsible for recognizing and transporting drugs by itself within the 

heterotrimeric efflux pump (26). Thus, the structures of individual protomers of AcrB and 

CmeB captured by crystallography may simply reflect the conformation of various transient 

states that these protomers may go through within the transport cycle. To this point, the 

conformations of the three protomers within the trimeric pump can be identical with three 

periplasmic clefts open or closed as shown in the case of the symmetric structures of AcrB (20) 

and CusA (18). However, the structures of individual protomers of the trimeric pump can also 

be distinct from each other as indicated in the cases of the asymmetric AcrB structures (14, 16, 
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17), where the three protomers are in different transient states with two open and one closed 

periplasmic clefts within the trimer. For the asymmetric CmeB trimer, the conformations of the 

three protomers display in such a way that either only one out of the three periplasmic clefts is 

open or all of these clefts are closed. 

 

Single-molecule FRET studies 

To elucidate if a CmeB protomer can export drugs individually within the trimer, we 

decided to directly observe the transport dynamics and conformational changes of the 

periplasmic domain movements using total internal reflection sm-FRET imaging. Based on the 

crystal structures of CmeB, we introduced a single cysteine mutation at a position of high 

solvent accessibility as well as low sequence conservation. The resulting three cysteine 

residues within each CmeB trimer were derivatized with a mixture of maleimide-activatived 

Alexa Fluor 546 (AF546) and Alexa Fluor 647 (AF647), which served as a molecular ruler for 

measuring the distance between two inter-subunit cysteines. As CmeB is a proton-motive-force 

(PMF)-dependent transporter, we reconstituted the purified and derivatized CmeB protein into 

liposomes, where we could generate the proton gradient required for substrate translocation. 

These proteoliposomes were immobilized on streptavidin-decorated surfaces for FRET signal 

recording (Fig. 3a). 

We chose to mutate residue K843 to a cysteine in order to anchor the dyes. This residue 

is located right outside subdomain PC2, facing the periplasm, and at a position where the inter-

subunit distances are quite different between the conformations as suggested by the crystal 

structures (Fig. 3b and c). We selected the CmeB trimers that only contained one donor 

(AF546) and one acceptor (AF647) dyes for FRET measurements.  If CmeB functions by 

means of the proposed rotating mechanism (14, 16, 17), sequentially transitioning through 

three different states, then the distance between the two inter-subunit K843 residues should 
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sequentially vary in a manner of ~74 Å, ~79 Å and ~69 Å, respectively. This should lead to the 

observation of three distinct signals, which correspond to the intermediate-, low- and high-

FRET states, in the FRET trajectory and transition density plot (Fig. 3d and e). However, if 

CmeB employs a different mechanism to recognize and export substrates, the characteristic of 

this transition density plot should be different.   

We adjusted the inter- and intra-vesicular pHs to 6.5 and 7.5, respectively. We then 

performed sm-FRET experiments both in the absence and presence of 1 or 10 µM 

taurodeoxycholate (Tdc), which is the CmeB substrate. In the absence and presence of Tdc, the 

FRET state values are very similar. We also find that the frequency of transitions is more or 

less the same with and without the substrate Tdc. The majority of the populations of apo-CmeB 

are largely in favor of the low FRET state. However, the addition of substrates seems to shift 

the state occupancies more favorable to the higher FRET states (Fig. 4). At least four distinct 

states can be observed, indicating that the trimeric pump is transitioning between various 

states. These four states are labeled as low (L), intermediate-1 (I1), intermediate-2 (I2) and high 

(H) FRET states, which correspond to ~0.20, ~0.35, ~0.45 and ~0.60 FRET efficiencies. 

Interestingly, our sm-FRET data do not seem to agree with the proposed rotating mechanism. 

Based on the traces and symmetrical nature of the density plots, it is more likely that the three 

protomers function independently of each other.  

Drug export by RND transporters depends upon the PMF (12). In the transmembrane 

region of CmeB, the conserved charged residues D409, D410 and K935 form a salt-bridge 

triad, which most probably establishes the proton-relay network and relays proton translocation 

for energy coupling. A single point mutation on these corresponding residues in MexB (27), 

AcrB (28) and CusA (18, 25) has been found to impair the function of these pumps. To disrupt 

this proton relay network in the CmeB pump, we replaced D409 by an alanine to form a 

K843C-D409A double-point mutant. This double-point mutant was then purified, derivatized 
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with AF546 and AF647 and reconstituted into liposomes for FRET signal recording. Again, all 

of these sm-FRET experiments were done in the presence of a proton gradient with the inter- 

and intra-vesicular pHs at 6.5 and 7.5, respectively. As expected, this double mutant did not 

show much activity in terms of its dynamic movement. In the absence of Tdc, the frequency of 

transitions of the K843C-D409A mutant was reduced by at least seven times compared with 

that of the K843C transporter. Within 20 min of FRET trajectories, the data contain only 139 

transitions for the K843C-D409A double mutant. Most of the population of this K843C-

D409A mutant is found to cluster in the low FRET state regardless of the presence of ligand 

(Fig. 5). This low FRET state is also seen in the K843C mutant. The FRET data indicate that 

the distance between the donor and acceptor dyes at this low FRET state is ~85 Å, 

corresponding to the 0.2 FRET efficiency. This distance is significantly longer than the 

distances observed in our crystal structures. However, this distance is similar to that depicted in 

the crystal structure of the “resting” state of apo-CusA (18, 19). In this state, the three 

periplasmic clefts of the CusA heavy-metal efflux pump are closed within the trimer. The data 

suggest that the CmeB protomers may prefer the “resting” conformation, in the absence of the 

PMF, and the process of transitioning from the “resting” to “binding” states may be energy 

dependent. 

Hidden Markov modeling (HMM) (29) was then used to quantify the transition rates of 

these various FRET states. In the absence of Tdc, the transition density plot of the K843C 

mutant indicates that the predominant FRET transitions are L à I1 and I1 à L, which 

correspond to the reversible transitions between the “resting-resting” and “resting-binding” 

subunits. A histogram derived from a population of dwell times was fitted with a single 

exponential decay, resulting in kLàI1 = 1.64 s-1 (0.61 s) and kI1àL = 3.22 s-1 (0.31 s) transition  



www.manaraa.com

  

 

102 

rates for the processes “resting-resting” à “resting-binding” and “resting-binding” à “resting-

resting”, respectively (Table 2 and Fig. S4). The data suggest that the kinetics of CmeB are 

quite simple and can be described with a single rate constant. 

In the presence of 1 µM Tdc, there is a significant decrease in the reverse transition I1 

à L. The rate for this reverse transition is kI1àL = 1.82 s-1 (0.55 s), which is almost two times 

slower than the same process without the substrate. In addition, there is a substantial increase 

in the forward transition I1 à I2, suggesting that the K843C mutant may prefer to advance the 

transport cycle by shifting the “resting-binding” to “resting-extrusion” or “binding-binding” 

states. Apparently, this process is reversible as indicated by the observation of the reverse 

transition I2 à I1. The forward and reverse transition rates were calculated to be kI1àI2 = 1.61 s-

1 (0.62 s) and kI2àI1 = 3.45 s-1 (0.29 s), respectively (Table 2 and Fig. S5).     

As the Tdc concentration increased to 10 µM, the transition between I2 and H was 

observed, suggesting that the transporter continues to move forward the transport cycle by 

switching from the “resting-extrusion” to the “binding-extrusion” forms. This process is also 

reversible and the transition rates for these forward and reverse processes are kI2àH = 1.59 s-1 

(0.63 s) and kHàI2 = 2.86 s-1 (0.35 s) (Table 2 and Fig. S6). 

For the K843C-D409A mutant pump, the density plots are much simpler and their 

characteristics are more or less the same regardless of the presence of Tdc. Both in the absence 

and presence of substrate, the only observed transitions are the reversible conformational 

change between the “resting-resting” and “resting-binding” forms, as indicated by the L à I1 

and I1 à L transitions. However, the rates of forward transitions are much slower than those 

for the K843C mutant. Specifically, in the absence of Tdc, the rates for the forward and reverse 

transitions in the K843C-D409A pump are kLàI1 = 0.54 s-1 (1.85 s) and kI1àL = 2.86 s-1 (0.35 s)  
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(Table 2 and Fig. S7), suggesting that the transition process “resting-resting” à “resting-

binding” may be energy dependent and needs to couple with the PMF. All of these observed 

transition rates are listed in Table 2.              

We have defined the crystal structures of CmeB and directly observed the transport 

dynamics of this membrane protein reconstituted in proteoliposomes at the single-molecule 

level. These data lead us to propose a simple model for the CmeB transport mechanism (Fig. 

6), in which the protomers export substrates independently of each other within the trimer. In 

the absence of the PMF, the CmeB protomers may prefer the “resting” conformation, which is 

evidenced through our FRET data that the inter-subunit distance of the K843C-D409A double 

mutant measured between the two K843 residues is relatively long in comparison with that of 

the K843C mutant. It was found that there are relatively very little motions going on in this 

double mutant, suggesting that a transition from the “resting” to “binding” states may need to 

couple with the PMF. In the presence of the PMF, it appears that there are a few more observed 

transitions, suggesting that the pump can easily continue to advance the transport cycle by 

coupling with the proton-relay network. Our data indicate that the CmeB protomers can 

independently progress to “binding” and then “extrusion” conformations. The populations of 

these two states can be greatly enhanced by the addition of the Tdc ligand. Our data allow us to 

uncover the mechanism of drug export, where the three CmeB subunits undergo 

conformational changes independently of each other.   

 

Accession Code 

Atomic coordinates and structure factors for the structures of CmeB have been 

deposited at the RCSB Protein Data Bank with accession codes 5T0O (form I) and 5LQ3 (form 

II).  
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Materials and Methods 

Cloning, expression and purification of the CmeB efflux pump 

The full-length CmeB membrane protein containing a 6xHis tag at the N-terminus was 

overproduced in E. coli BL21(DE3)ΔacrB cells, which harbors a deletion in the chromosomal 

acrB gene,  possessing pET15bΩcmeB. Cells were grown in 12 L of LB medium with 100 

µg/ml ampicillin at 37oC. When the OD600 reached 0.5, the culture was treated with 1 mM 

IPTG to induce cmeB expression, and cells were harvested within 3 h. The collected bacteria 

were resuspended in low salt buffer containing 100 mM sodium phosphate (pH 7.2), 10 % 

glycerol, 1 mM ethylenediaminetetraacetic acid (EDTA) and 1 mM phenylmethanesulfonyl 

fluoride (PMSF), and then disrupted with a French pressure cell. The membrane fraction was 

collected and washed twice with high salt buffer containing 20 mM sodium phosphate (pH 

7.2), 2 M KCl, 10 % glycerol, 1 mM EDTA and 1 mM PMSF, and once with 20 mM HEPES-

NaOH buffer (pH 7.5) containing 1 mM PMSF.  The membrane protein was then solubilized in 

1 % (w/v) 6-cyclohexyl-1-hexyl-β-D-maltoside (Cymal-6). Insoluble material was removed by 

ultracentrifugation at 100,000 x g. The extracted protein was purified with a Ni2+-affinity 

column.  The purity of the CmeB protein (>95%) was judged using 10% SDS-PAGE stained 

with Coomassie Brilliant Blue. The purified protein was then dialyzed and concentrated to 20 

mg/ml in a buffer containing 20 mM Na-HEPES (pH 7.5) and 0.05% Cymal-6. 
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Crystallization of CmeB 

The 6xHis CmeB crystals were grown at room temperature using sitting-drop vapor 

diffusion with the following procedures. For the form I crystals, a 2 µl protein solution 

containing 20 mg/ml CmeB protein in 20 mM Na-HEPES (pH 7.5) and 0.05% (w/v) Cymal-6 

was mixed with a 2 µl of reservoir solution containing 4% PEG 8000, 0.1 M Na-MES (pH 6.5) 

and 0.1 M MgSO4. Similarly, the form II crystals were crystallized in reservoir solution 

containing 6% PEG 8000, 50 mM M Na-MES (pH 6.5) and 60 mM MnCl2.The resultant 

mixture was equilibrated against 500 µl of the reservoir solution. Crystals of both forms I and 

II grew to a full size in the drops within a month.  Typically, the dimensions of the crystals 

were 0.2 mm x 0.2 mm x 0.2 mm.  Cryoprotection was achieved by raising the glycerol 

concentration stepwise to 25% with a 5% increment in each step. 

 

Data collection, structural determination and refinement  

All diffraction data were collected at 100K at beamline 24ID-C located at the Advanced 

Photon Source, using a Platus 6M detector. Diffraction data were processed using DENZO and 

scaled using SCALEPACK (30).     

The form I crystals of CmeB belong to space group C2 (Table S1). Based on the 

molecular weight of CmeB (114.99 kDa), three molecules per asymmetric unit with a solvent 

content of 67.7% were expected. The structure of CmeB was phased using molecular 

replacement, utilizing the structure of AcrB (14) as a search model. After tracing the initial 

model manually using the program Coot (31), the model was refined against the native data at 

3.15 Å-resolution using TLS refinement techniques adopting a single TLS body as 

implemented in PHENIX (32) leaving 5% of reflections in Free-R set. Iterations of refinement  
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were done using PHENIX (32) and CNS (33). Model building was performed using Coot (31). 

The final model of the CmeB pump consists of 3,105 residues in the asymmetric unit with 

excellent geometrical characteristics (Table S1). 

The form II crystals took the space group P1 (Table S1). This structure was determined 

using molecular replacement, utilizing the structure of form I as an initial search model. After 

tracing the initial model using the program Coot (31), the model was refined against the native 

data at 3.63 Å-resolution. The remaining procedures for model building and structural 

refinement were identical to those for the form I structure.  

 

Protein reconstitution into lipopsomes 

Single cysteine mutations were introduced to produce a cysteineless CmeB variant, in 

which the three natural cysteine residues located in the transmembrane region have been 

replaced with serines, using site-directed mutagenesis. Constructs were verified by DNA 

sequencing and transformed into E. coli BL21(DE3)∆acrB cells. Proteins were expressed as N-

terminal 6xHis fusions and purified as described above. The purified proteins were then 

dialyzed, concentrated to 20 µM in a buffer containing 20 mM Na-HEPES (pH 7.5) and 0.03% 

DDM, and labeled with a mixture of maleimide-activated AF546 and AF647 at final 

concentrations of 20 and 100 µM, respectively. Labeled proteins were quenched with 10 mM 

2-mercaptoethanol and subsequently purified away from excess reagents using size exclusion 

chromatography.   

The labeled CmeB variants were reconstituted into liposomes made of 74.5% E. coli 

total lipid, 24.5% egg-yolk phosphatidylcholine and 1% 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(cap biotinyl) (biotin-DOPE) (Avanti Polar Lipids, Alabaster, AL) in 

a buffer containing 20 mM Na-HEPES (pH 7.5). Each CmeB variant was mixed with 

unilamellar liposomes in 20 mM Na-HEPES (pH 7.5) and 0.2% n-dodecyl-β-D-maltoside 
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(DDM) at a protein-to-lipid ratio of 1:10,000 (w/w) to ensure a high probability of having only 

one single CmeB trimer per liposome. The liposome/protein mixture was incubated for 1 hour 

at room temperature under gentle agitation. Subsequently, this mixture was diluted stepwise 

three times within 45 min. The final concentration of DDM should be below the critical 

micelle concentration of ~0.008%. Detergents were then removed by SM2 Biobeads (Bio-Rad) 

and PD-10 desalting column (GE Healthcare Bio-Sciences, Pittsburgh, PA).  

 

Single-molecule FRET experiments 

All sm-FRET experiments were performed using a home-built prism-based total 

internal reflection fluorescence microscope constructed around an inverted microscope body 

(Olympus IX71). The samples were illuminated with a 532 nm solid-state laser to excite the 

AF546 donor dye. A 635 nm helium-neon laser was used to ensure the presence of the AF647 

acceptor dye. The AF546 and AF647 fluorescence signals were collected using a water-

immersion lens (Olympus UPLSAPO 60XW) and separated using a dichroic mirror (Chroma 

T6601pxr). Imaging data were acquired using smCamera acquisition software and an electron-

multiplying charged-coupled device camera (Andor Technology iXon3 DU879E).  

Quartz slide (Chemglass Life Sciences, Vineland, NJ) and micro cover glass (VWR Life 

Sciences, Radnor, PA) were extensively cleaned and functionalized by coating the surface with 

methoxy-PEG-5000 and Biotin-PEG- 5000 (100:1) (Laysan Bio, Arab, AL). These slides and 

cover glasses were assembled to form a flow-cell device. This flow cell was then incubated 

with a solution containing 20 mM Na-HEPES (pH 7.5) and 100 µg/ml streptavidin from 

Streptomyces avidinii (Sigma-Aldrich, St. Louis, MO) for 5 min. Unbound streptavidin was 

subsequently washed out with 20 mM Na-HEPES (pH 7.5). Next, a suspension of 

proteoliposomes (100 µg/ml lipid concentration) extruded through a 100-nm pore-size  
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polycarbonate filter (GE Healthcare Bio-Sciences, Pittsburgh, PA) was flushed in, followed by 

a 4-min incubation to allow the liposomes to adhere to the surface. Unbound proteoliposomes 

were washed away with buffer containing 20 mM Na-HEPES (pH 7.5). 

All imaging experiments were performed in solution containing 20 mM HEPES (pH 

6.5), 2 mM cyclooctatetraene (Sigma-Aldrich, St. Louis, MO) and 5 mM β-mercaptoethanol 

(Sigma-Aldrich, St. Louis, MO). To avoid unwanted pH drop causing by common enzymatic 

oxygen scavengers, such as glucose oxidase and catalase and protocatechuate dioxygenase, 

during data collection, we used a pH stable pyranose oxidase and catalase (34) in all of our 

experiments. Thus, the solution was supplemented with a pH stable enzymatic oxygen 

scavenger system comprising 3 units/ml pyranose oxidase, 8 units/ml catalase and 0.8% 

glucose (Sigma-Aldrich, St. Louis, MO). All data were collected at an imaging rate of 10 s-

1 (100 ms integration time). At the beginning of each experiment, a 10 s (100 frames) movie 

was recorded with an alternation of 532-nm and 637-nm excitation. This alternating laser 

excitation (ALEX) scheme (35) allowed us to separate the fluorescence contributions of the 

green and red dyes, thus permitting us to identify the CmeB trimers that contain only one green 

and one red dyes. 

 

Single-molecule FRET data analysis. 

The movies acquired in single-molecule imaging were processed with smCamera 

program (https://cplc.illinois.edu/software/) to identify and extract donor and acceptor 

fluorescence intensity profiles of individual molecules. Traces extracted from the movies were 

interactively selected with the following criteria: (i) only a single AF546 and a single AF647 

dyes in a proteoliposome determined by the alternating laser excitation (ALEX) scheme (35) 

was used; (ii) no more than one bleaching step for the donor and acceptor fluorophores was 

allowed; (iii) only those data indicate a clear anti-correlated pattern between the donor and 
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acceptor fluorescence intensities were used; and (iv) vesicles that contain a constant total 

fluorescence intensity from the donor and acceptor before photobleaching were selected. The 

FRET trajectories were calculated from the acquired intensities, IAF546 and IAF647, using the 

formula FRET = IAF647/(IAF546 + IAF647). Individual single-molecule traces were analyzed using 

HaMMy (29) to generate idealized traces. Transition density plots (TDPs) were generated 

using the MATLAB code (36), which was kindly provided by Professor Jong-Bong Lee from 

POSTECH, Korea. The histograms were calculated using the Origin Pro software (OriginLab, 

Northampton, MA). The bin size of all sm-FRET histograms was set at 0.02. 
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Figures and captions 
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Fig. 1.  Structure of the CmeB efflux pump. (a) Ribbon diagram of the form I structure of the 

CmeB homotrimer viewed in the membrane plane. Each subunit of CmeB is labeled with a 

different color.  Sub-domains DN, DC, PN1, PN2, PC1 and PC2 are labeled on the front 

protomer (red). (b) Top view of the form I CmeB trimer. Each subunit of CmeB is colored 

differently. The six sub-domains DN, DC, PN1, PN2, PC1 and PC2 are labeled. In this 

conformation, the periplasmic cleft between PC1 and PC2 is closed in each protomer. (c) Top 

view of the form II CmeB trimer. In this conformation, only one out of the three periplasmic 

clefts formed between PC1 and PC2 is open. 
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Fig. 2.  Channels in the CmeB pump. (a) Side view and (b) top view of the channels formed by 

the periplasmic domain of the form I structure of the CmeB trimer. Each protomer creates an 

extrusion channel for drug export. (c) Side view and (d) top view of the channels formed by the 

periplasmic domain of the form II structure of the CmeB trimer. The “extrusion” protomer 

generates an extrusion channel that is similar to those observed in the form I structure. The 

“binding” protomer constitutes a channel, which leads through the opening of the periplasmic 

cleft and is exposed to solvent. The “resting” protomer does not form any channel. These 

channels were calculated using the program CAVER (http://loschmidt.chemi.muni.cz/caver).   
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Fig. 3. Schematic diagram for visualizing the dynamics of the trimeric CmeB pump 

incorporated in proteoliposomes using total internal reflection smFRET imaging. (a) The three 

subunits of CmeB embedded in the lipid vesicle are colored differently. The AF546 and AF647 

dyes are in green and magenta, respectively. (b) Inter-subunit distances measured between the 

two K843 residues of the form I CmeB trimer. (c) Inter-subunit distances measured between 

the two K843 residues of the form II CmeB trimer. (d) The predicted FRET trajectory and (e) 

predicted density plot of the transport dynamics of the CmeB pump if this pump functions via 

the proposed rotating mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Dynamics in the apo and substrate bound CmeB pump. (a) Experimental trace of CmeB 

single-molecule dynamics with donor (green) and acceptor (red) fluorescence (in the absence 

of Tdc, top panel; in the presence of 1 µM Tdc, middle panel; in the presence of 10 µM Tdc, 

bottom panel). (b) FRET trajectories (blue) and idealization of these FRET efficiencies (red) 
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(in the absence of Tdc, top panel; in the presence of 1 µM Tdc, middle panel; in the presence 

of 10 µM Tdc, bottom panel). (c) FRET efficiency population histograms of CmeB (in the 

absence of Tdc (n = 69 traces), top panel; in the presence of 1 µM Tdc (n = 77 traces), middle 

panel; in the presence of 10 µM Tdc (n = 73 traces), bottom panel). (d) Transition density plots 

for the CmeB efflux pump (in the absence of Tdc, top panel; in the presence of 1 µM Tdc, 

middle panel; in the presence of 10 µM Tdc, bottom panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Dynamics in the apo and substrate bound of the proton-relay mutant of CmeB. (a) 

FRET efficiency population histograms of CmeB (in the absence of Tdc (n = 40 traces), top 

panel; in the presence of 1 µM Tdc (n = 37 traces), middle panel; in the presence of 10 µM Tdc 
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(n = 47 traces), bottom panel). (b) Transition density plots for the CmeB efflux pump (in the 

absence of Tdc, top panel; in the presence of 1 µM Tdc, middle panel; in the presence of 10 

µM Tdc, bottom panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Proposed simple model of drug efflux mechanism. This schematic diagram indicates 

that each protomer within the CmeB trimer can independently go through a sequence of 

conformational transitions, which lead to the extrusion of substrate (R, resting; B, binding; E, 

extrusion; U, unlabeled).  
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Table 1. Data collection and refinement statistics.  

 

Data set 
CmeB (form 

I) CmeB (form II)  
Data Collection      
Wavelength (Å) 0.98 0.98  
Space group C2 P1   
Resolution (Å) 50 – 3.15 50 – 3.63   
 (3.26 – 3.15) (3.77 – 3.63)   
Cell constants (Å)     
     a 300.71 120.85   
     b 147.54 127.94   
     c 120.03 169.58   
     α, β, γ (°) 90.0, 99.9, 90.0 99.8, 99.4, 85.0   
Molecules in ASU 3 6   
Redundancy 1.6 (1.6) 3.7 (3.7)   
Total reflections 938,124 9060,758   
Unique reflections 89,043 123,738   
Completeness (%) 97.7 (98.0) 97.7 (93.6)   
Rsym (%) 10.3 (48.3) 10.9 (48.8)   
I / σ 6.57 (1.4) 6.6 (1.2)  

 

Refinement     
Resolution (Å) 50 – 3.15 50 – 3.63  
Rwork (%) 19.49 22.08  
Rfree (%) 25.79 25.72   
Average B-factor (Å2) 60.19 94.5   
RMSD bond lengths (Å) 0.009 0.004   
RMSD bond angles (°) 1.39 0.73  

 
Ramachandran plot       
most favoured (%) 89.5 86.6  
additional allowed (%) 9.9 12.2   
generously allowed (%) 0.6 1.2   
disallowed (%) 0.0 0.0   
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Table 2. Dwell times for CmeB transitions. 
 

 FRET transition dwell time (s) 
CmeB [Tdc] 

(µM) 
L à I1 I1 à L I1 à I2 I2 à I1 I2 à H 

H 
à 
I2 

K843C 0 0.61 ± 
0.06 

0.31 ± 
0.04 

0.54 ± 
0.04 

0.26 ± 
0.07   

1 0.52 ± 
0.04 

0.55 ± 
0.05 

0.62 ± 
0.03 

0.29 ± 
0.03   

10 
0.47 ± 
0.03 

0.65 ± 
0.02 

0.50 ± 
0.03 

0.49 ± 
0.07 

0.63 ± 
0.07 

0.35 
± 

0.03 
K843C-
D409A 

0 1.85 ± 
0.13 

0.35 ± 
0.01 

    

1 1.68 ± 
0.34 

0.31 ± 
0.05 

    

10 1.47 ± 
0.39 

0.39 ± 
0.12 
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Fig. S1. Stereo view of the electron density maps of CmeB (form I) at a resolution of 3.15 Å. 

(a) The electron density maps are contoured at 1.2 σ. The Cα traces of the CmeB trimer in the 

asymmetric unit are included. (b) Representative section of the electron density in the vicinity 

of TMs 2 and 11 of CmeB. The electron density (colored white) is contoured at the 1.2 σ level 

and superimposed with the final refined model (green, carbon; red, oxygen; blue, nitrogen).  

 

 
S2a 

 

 

 S2b 
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Fig. S2. Stereo view of the electron density maps of CmeB (form II) at a resolution of 3.63 Å. 

(a) The electron density maps are contoured at 1.2 σ. The Cα traces of the CmeB trimer in the 

asymmetric unit are included. (b) Representative section of the electron density in the vicinity 

of TMs 3, 5 and 6 of CmeB. The electron density (colored white) is contoured at the 1.2 σ 

level and superimposed with the final refined model (green, carbon; red, oxygen; blue, 

nitrogen).  

 

 
 
 
 
S3 

 

Fig. S3. Different conformations of the periplasmic domains of RND efflux pumps. The 

structures suggest that the periplasmic clefts formed by subdomains PC1 and PC2 could open 

or closed independently. 
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S4 

 

Fig. S4. Distribution of dwell times for CmeB (K843C) transitions in the absence of ligand. 

The exponential lifetime can be obtained by fitting the data with a single-exponential function, 

resulting in (a) τLàI1 = 0.61 s (kLàI1 = 1.64 s-1), (b) τI1àL = 0.31 s (kI1àL = 3.22 s-1), (c) τI1àI2 = 

0.54 s (kI1àI2 = 1.85 s-1) and (d) τI2àI1 = 0.26 s (kI2àI1 = 3.84 s-1). 

 
 
 
S5 
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Fig. S5. Distribution of dwell times for CmeB (K843C) transitions in the presence of 1 µM 

Tdc. The exponential lifetime can be obtained by fitting the data with a single-exponential 

function, resulting in (a) τLàI1 = 0.52 s (kLàI1 = 1.92 s-1), (b) τI1àL = 0.55 s (kI1àL = 1.82 s-1), (c) 

τI1àI2 = 0.62 s (kI1àI2 = 1.61 s-1) and (d) τI2àI1 = 0.29 s (kI2àI1 = 3.45 s-1). 

 

 
 
S6 

 

Fig. S6. Distribution of dwell times for CmeB (K843C) transitions in the presence of 10 µM 

Tdc. The exponential lifetime can be obtained by fitting the data with a single-exponential 

function, resulting in (a) τLàI1 = 0.47 s (kLàI1 = 2.13 s-1), (b) τI1àL = 0.65 s (kI1àL = 1.54 s-1), (c) 

τI1àI2 = 0.50 s (kI1àI2 = 2.00 s-1), (d) τI2àI1 = 0.49 s (kI2àI1 = 2.04 s-1), (e) τI2àH = 0.63 s (kI2àH = 

1.59 s-1) and (f) τHàI2 = 0.35 s (kHàI2 = 2.86 s-1). 
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S7 

 

Fig. S7. Distribution of dwell times for CmeB (K843C-D409A) transitions. The exponential 

lifetime can be obtained by fitting the data with a single-exponential function. In the absence of 

ligand, the resulting dwell times are (a) τLàI1 = 1.85 s (kLàI1 = 0.54 s-1) and (b) τI1àL = 0.35 s 

(kI1àL = 2.86 s-1). In the presence of 1 µM Tdc, the resulting dwell times are (c) τLàI1 = 1.68 s 

(kLàI1 = 0.60 s-1) and (d) τI1àL = 0.31 s (kI1àL = 3.22 s-1). In the presence of 10 µM Tdc, the 

resulting dwell times are (e) τLàI1 = 1.47 s (kLàI1 = 0.68 s-1) and (f) τI1àL = 0.39 s (kI1àL = 2.56 

s-1).   
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CHAPTER 5. GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

 
 
 

Active drug efflux is one of the major reasons for bacterial resistance against 

antibiotics. Efflux pumps of the RND superfamily play, by far, the predominant role in 

providing multidrug resistance to Gram-negative bacteria. As emphasized before, these pumps 

associate with two other classes of proteins: a periplasmic “membrane fusion protein” (MFP) 

and an “outer membrane factor” (OMF) protein. This construction is highly beneficial because 

it allows direct export of drugs into the extracellular space, instead of the periplasm. Also, it 

creates an outer membrane barrier to the drugs exported outside the cell, and hence makes 

bacterial cells less susceptible to drugs [1]. More recent efforts have also been directed towards 

understanding the complex regulatory pathways controlling the expression of multidrug 

resistance (MDR) genes. Studies have shown that most regulators act by directly binding to a 

similar range of toxic substrates as exported by the pump whose expression they control [2]. 

This dissertation is focused on the study of a transcriptional regulator Rv1219c of M. 

tuberculosis and two RND superfamily proteins: hopanoid transporter HpnN of B. multivorans 

and CmeB drug efflux pump of C.  jejuni. 

 

In Chapter 2, we elucidated the structural basis of Rv1219c regulation by determining 

the crystal structure of Rv1219c.  The Rv1217c-Rv1218c multidrug efflux system, which 

belongs to the ATP-binding cassette superfamily, recognizes and actively extrudes a variety of 

structurally unrelated toxic chemicals including, novobiocins, pyrazolones, biarylpiperazines, 

bisanilinopyrimidines, pyrroles, and pyridines [3]. The expression of Rv1217c-Rv1218c is 

controlled by TetR-like transcriptional regulator Rv1219c, which is encoded by a gene 

immediately upstream of rv1218c. The crystal structure of Rv1219c reveals a dimeric 

arrangement of two monomers in the asymmetric unit, similar to members of the TetR family 
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of transcriptional regulators. The N-terminal domains of the Rv1219c dimer are separated by a 

large center-to-center distance of 64 Å. The C-terminal domain of each protomer possesses a 

large cavity. Docking studies suggested that this large cavity can accommodate a variety of 

structurally unrelated antimicrobial agents, and hence could be forming a multidrug binding 

pocket. The internal wall of this multidrug binding pocket is surrounded by seven aromatic 

residues, indicating that drug binding could possibly be governed by aromatic stacking 

interactions. In addition, fluorescence polarization studies reveal that Rv1219c is capable of 

binding drugs in the micromolar range [4].  

Overall, the major challenges and the future directions are to crystallize the ligand-

bound and DNA-bound forms of Rv1219c. Obtaining these structures might facilitate 

understanding the regulatory mechanism in M. tuberculosis, leading to rational designing of 

the drugs. These drugs could further be used to block the function of Rv1219c and hence 

inhibit the expression of the multidrug efflux pump. 

 

In Chapter 3, we elucidated the structures of HpnN transporter which has been reported 

to be essential for the cell wall biogenesis [5] in B. multivorans. Two distinct conformations of 

HpnN (forms I and II) were captured in two different forms of crystal. In the asymmetric unit 

of both structures, two monomers were arranged as a dimer. Also, each HpnN protomer created 

a channel spanning the outer leaflet of the inner membrane and up to the periplasmic domain. 

Overall, HpnN has a very unique structure, since it is the only RND protein to be found to exist 

as a dimer to date. The striking difference between forms I and II of HpnN exists in the 

periplasmic domain, where the form II HpnN is open compared to form I HpnN. The two 

different conformations of HpnN basically depict the possible transient states involved in the 

transport of hopanoids from the inner membrane to the periplasm. To further confirm the 

importance of HpnN in hopanoid transport, B. thailandensis E264 strain was used. The knock 
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out B. thailandensis E264ΔhpnN cells, either alone or transformed with empty vector 

pHERD20T, were unable to grow in LB media supplemented with antibiotics like 

chloramphenicol, novobiocin or polymyxin B. However, the growth was restored in B. 

thailandensis E264ΔhpnN cells compensated with pHERD20TΩhpnN under the same 

conditions. This suggests that HpnN is critical for mediating multidrug resistance in B. 

thailandensis. Further, mutagenesis studies using the B. thailandensis E264ΔhpnN cells 

compensated with pHERD20TΩhpnN confirmed that the conserved residues L48, F117, D344, 

F541, W661, T818, and T819 are important for the functioning of HpnN.  

The major goal of this project was to decipher one of the key mechanisms that 

Burkholderia pathogens employ to mediate drug resistance and hence affect the 

immunocompromised individuals such as cystic fibrosis pateints. HpnN plays a big role in the 

virulence of these pathogens by shuttling hopanoids towards the outer membrane and hence 

decreasing the permeability of the cell towards the antibiotics. In order to further investigate 

the hopanoid transport mechanism involved in HpnN, techniques like sm-FRET and single 

particle cryo-EM would prove quite useful to visualize the different conformations and unravel 

the overall functional dynamics of HpnN protein. 

 

In Chapter 4, we determined the crystal structures of membrane protein CmeB in two 

different forms, both of which form an asymmetric trimer, resembling a typical RND-family 

protein. The most interesting fact here was that the periplasmic cleft between subdomains PC1 

and PC2 was closed in all the three protomers of form I CmeB, whereas in the form II CmeB 

the periplasmic cleft of one of the protomers was found to be open. In the asymmetric trimeric 

structure of the AcrB multidrug transporter, each monomer displays a distinct conformational 

state. It has been proposed that the three monomers in AcrB represent the consecutive states 

involved in the drug transport cycle: access, binding and extrusion. Thus, a functionally 
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rotating mechanism was suggested for the extrusion of drugs in AcrB, where each monomer 

works in a cooperative fashion with the other [6, 7]. 

The trimeric structure of form I CmeB was found to have all three periplasmic clefts 

closed and hence resembles the “extrusion” state of AcrB. Surprisingly, in the asymmetric 

trimer of form II CmeB, the periplasmic cleft of only one protomer was open, similar to the 

“binding” state of AcrB. Although, the periplasmic clefts are closed in the other two protomers 

of form II CmeB, only one of them relates closely to the “extrusion” state of form I CmeB. The 

other protomer surprisingly displayed a distinct conformation from the “extrusion” form, 

forming a new state. We believed this new conformation represented one of the intermediate 

states involved in drug transport never seen before [8, 9, 10]. The drug transport mechanism of 

CmeB was further elucidated using single molecule fluorescence resonance energy transfer 

(sm-FRET), where we directly observed the conformational dynamics in individual CmeB 

trimers embedded in membrane vesicles. FRET measurements indicated that each CmeB 

subunit undergoes uncoordinated conformational transitions which are independent of each 

other. Hence we postulated that individual protomers of these trimeric RND pumps might be 

capable of binding and exporting drugs independently, rather than operating in a synchronized 

way.  

One of the future directions in this project is to crystallize CmeB with a native substrate 

in order to determine the important residues in the binding pocket and the conformational 

changes involved. Hence, the structural determination would further aid the understanding of 

drug efflux mechanism in Campylobacter jejuni.  

 

MDR is a natural and unavoidable phenomenon, posing a serious threat to the public 

health. Pathogens tend to adopt various resistance mechanisms in order to survive various 

unfavorable conditions. An effort towards continuous development of newer drugs along with 
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cooperative action at global level for implementation of various awareness programs to 

highlight the appropriate use of drugs is needed to combat the MDR. The work in this thesis is 

aimed at improving the knowledge of structural and functional mechanisms of proteins 

controlling MDR and hence contribute towards development of novel therapies to counteract 

infectious diseases [11]. 
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